4 resultados para Mutual information

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, there has been an increased number of sequenced RNAs leading to the development of new RNA databases. Thus, predicting RNA structure from multiple alignments is an important issue to understand its function. Since RNA secondary structures are often conserved in evolution, developing methods to identify covariate sites in an alignment can be essential for discovering structural elements. Structure Logo is a technique established on the basis of entropy and mutual information measured to analyze RNA sequences from an alignment. We proposed an efficient Structure Logo approach to analyze conservations and correlations in a set of Cardioviral RNA sequences. The entropy and mutual information content were measured to examine the conservations and correlations, respectively. The conserved secondary structure motifs were predicted on the basis of the conservation and correlation analyses. Our predictive motifs were similar to the ones observed in the viral RNA structure database, and the correlations between bases also corresponded to the secondary structure in the database.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

首先利用模糊C-均值聚类算法在多特征形成的特征空间上对图像进行区域分割,并在此基础上对区域进行多尺度小波分解;然后利用柯西函数构造区域的模糊相似度,应用模糊相似度及区域信息量构造加权因子,从而得到融合图像的小波系数;最后利用小波逆变换得到融合图像·采用均方根误差、峰值信噪比、熵、交叉熵和互信息5种准则评价融合算法的性能·实验结果表明,文中方法具有良好的融合特性·