38 resultados para Multiobjective Evolutionary Algorithm
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We propose an integrated algorithm named low dimensional simplex evolution extension (LDSEE) for expensive global optimization in which only a very limited number of function evaluations is allowed. The new algorithm accelerates an existing global optimization, low dimensional simplex evolution (LDSE), by using radial basis function (RBF) interpolation and tabu search. Different from other expensive global optimization methods, LDSEE integrates the RBF interpolation and tabu search with the LDSE algorithm rather than just calling existing global optimization algorithms as subroutines. As a result, it can keep a good balance between the model approximation and the global search. Meanwhile it is self-contained. It does not rely on other GO algorithms and is very easy to use. Numerical results show that it is a competitive alternative for expensive global optimization.
Resumo:
Abstract This paper presents a hybrid heuristic{triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in di®erential evolution (DE), TE targets each individual in current population and attempts to replace it by a new better individual. However, the way of generating new individuals is di®erent. TE generates new individuals in a Nelder- Mead way, while the simplices used in TE is 1 or 2 dimensional. The proposed algorithm is very easy to use and e±cient for global optimization problems with continuous variables. Moreover, it requires only one (explicit) control parameter. Numerical results show that the new algorithm is comparable with DE for low dimensional problems but it outperforms DE for high dimensional problems.
Resumo:
现有的空间飞行器编队重组的轨道规划方法在求解能量最优策略时,都预先给定了变轨花费的时间,但没有说明给定的时间是怎么选择的。将空间飞行器主从编队重组的轨道规划视为一个多目标优化问题,提出了一种小生境进化算法。该方法通过使用特定的染色体表示方法和进化算子,能有效的搜索到飞行器编队重组轨道规划问题的时间-能量前沿,并引入等值分享法保证优秀个体具有较大的选中概率和前沿的多样性。该方法能同时提供多种变轨方案,编队飞行的任务制定者从而可以根据实际应用情况选择最合适的方案。仿真结果表明了该方法的正确性。
Resumo:
航天任务需求的多样化对空间多飞行器编队重构的轨道规划问题不仅提出了燃料或时间最优的要求,还提出了燃料和时间最优以及燃料均衡的要求。将带燃料均衡的多飞行器编队重构的轨道规划建模为一个多目标优化问题,通过将进化计算与问题领域的知识相结合,提出了一种基于小生境进化算法的最优轨道规划方法。该方法能从变轨时间、燃料消耗和燃料消耗方差三方面分别评价一个变轨方案的最优性,并且一次规划能够提供多个Pareto最优变轨方案。仿真结果证明了该方法的正确性和有效性,还揭示了编队重构轨道规划问题的三个优化目标之间的关系,对于制定任务计划具有重要的参考价值.
Resumo:
轨道机动是航天器执行空间任务的基础,对轨道机动进行优化设计非常重要。 近年来,小推力发动机技术不断成熟,由于小推力发动机具有高比冲、低成本的优点,逐渐被用于轨道机动系统中。小推力轨道机动与常规轨道机动的不同在于小推力情况下,航天器变轨时间长,推力作用时间长,这使小推力轨道机动的优化设计极为困难。因此,小推力轨道机动优化成为航天器轨道机动优化领域的难点和热点,吸引了大批学者的关注和研究。本文对基于进化算法的小推力轨道转移时间-能量优化方法进行了研究。 由于进化算法属于一种参数优化方法,不能直接用于求解泛函形式表示的轨道转移优化问题。因此,本文引入并改进了一种基于Lyapunov反馈控制律的小推力转移轨道设计方法,使用该方法将小推力轨道转移最优控制问题转换成适合进化算法求解的多目标优化问题。 为了求解转换后的多目标优化问题,提出了一种 支配混合多目标进化算法。该算法使用基于 支配概念的选择算子,在保持群体多样性的同时,避免了许多多目标进化算法存在的退化现象。同时,为了改进算法局部搜索能力,将局部搜索方法与算法结合,构造出串行混合算法结构。 数值实验证明,本文提出的方法能够有效求解小推力轨道转移时间-能量优化问题。
Resumo:
The extended gravitational index G(Q) and quantum-chemical descriptors were calculated for the relationship analysis of aminoquinolines. An evolutionary algorithm was described for variable selection and building QSAR models. And the quasi-newton neural networks were employed with better results.
Resumo:
在深入分析生物免疫系统中T细胞对B细胞辅助调节作用的基础上,提出了免疫反馈原理。针对非最小相位极点系统控制的难点,借鉴免疫反馈原理,结合积分控制的规律,提出了一种模糊免疫非线性PID控制方法。由于该方法中的参数确定比较复杂,利用免疫进化算法进行参数优化设计,实现了控制参数的合理设计。仿真结果表明,该方法在非最小相位极点系统控制中可行且有效,优于PID控制方法,具有更好的响应特性和抗干扰性能。
Resumo:
面对传统遗传算法在解决一些复杂问题时所存在的收敛慢或早熟等困难 ,基于仿人理性决策原则 ,提出一种具有更丰富进化含义的进化算法——理性遗传算法 .其通过遗传信息的反馈或理性规则的建立来指导遗传操作的进行 ,从而将种群内部知识与经验的继承和学习更有效地结合在遗传算法之中 .相对于传统遗传算法 ,较好地解决了多机器人确知环境下协调运动规划问题 .理论分析和仿真实验结果都是令人鼓舞的 .
Resumo:
We used Plane Wave Expansion Method and a Rapid Genetic Algorithm to design two-dimensional photonic crystals with a large absolute band gap. A filling fraction controlling operator and Fourier transform data storage mechanism had been integrated into the genetic operators to get desired photonic crystals effectively and efficiently. Starting from randomly generated photonic crystals, the proposed RGA evolved toward the best objectives and yielded a square lattice photonic crystal with the band gap (defined as the gap to mid-gap ratio) as large as 13.25%. Furthermore, the evolutionary objective was modified and resulted in a satisfactory PC for better application to slab system.
Resumo:
In this paper, as an extension of minimum unsatisfied linear relations problem (MIN ULR), the minimum unsatisfied relations (MIN UR) problem is investigated. A triangle evolution algorithm with archiving and niche techniques is proposed for MIN UR problem. Different with algorithms in literature, it solves MIN problem directly, rather than transforming it into many sub-problems. The proposed algorithm is also applicable for the special case of MIN UR, in which it involves some mandatory relations. Numerical results show that the algorithm is effective for MIN UR problem and it outperforms Sadegh's algorithm in sense of the resulted minimum inconsistency number, even though the test problems are linear.
Resumo:
在应用激光技术加工复杂曲面时,通常以采样点集为插值点来建立曲面函数,然后实现曲面上任意坐标点的精确定位。人工神经网络的BP算法能实现函数插值,但计算精度偏低,往往达不到插值精确要求,造成较大的加工误差。提出人工神经网络的共轭梯度最优化插值新算法,并通过实例仿真,证明了这种曲面精确定位方法的可行性,从而为激光加工的三维精确定位提供了一种良好解决方案。这种方法已经应用在实际中。
Resumo:
An algorithm based on flux-corrected transport and the Lagrangian finite element method is presented for solving the problem of shock dynamics. It is verified through the model problem of one-dimensional strain elastoplastic shock wave propagation that the algorithm leads to stable, non-oscillatory results. Shock initiation and detonation wave propagation is simulated using the algorithm, and some interesting results are obtained. (C) 1999 Academic Press.
Resumo:
Based on the internal variable theory, a viscoelastic constitutive model of a highly deformable continuous medium is proposed. A set of second rank tensorial internal state variables corresponding to Biot's strain is introduced, and a nonlinear evolution
Resumo:
Air exploratory discussion of an ancient Chinese algorithm, the Ying Buzu Shu, in about 2nd century BC, known as the rule of double false position in the West is given. In addition to pointing out that the rule of double false position is actually a translation version of the ancient Chinese algorithm, a comparison with well-known Newton iteration method is also made. If derivative is introduced, the ancient Chinese algorithm reduces to the Newton method. A modification of the ancient Chinese algorithm is also proposed, and some of applications to nonlinear oscillators are illustrated.