35 resultados para Multi-phase corrosion

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This short communication presents our recent studies to implement numerical simulations for multi-phase flows on top-ranked supercomputer systems with distributed memory architecture. The numerical model is designed so as to make full use of the capacity of the hardware. Satisfactory scalability in terms of both the parallel speed-up rate and the size of the problem has been obtained on two high rank systems with massively parallel processors, the Earth Simulator (Earth simulator research center, Yokohama Kanagawa, Japan) and the TSUBAME (Tokyo Institute of Technology, Tokyo, Japan) supercomputers.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ti-Zr-V-Mn-Ni-based multi-component alloys demonstrate high discharge capacity in KOH electrolyte. However, the drastic decrease in their discharge capacities makes them unsuitable for use as negative electrode material in the Ni/MH battery. In present work, Ni is partially replaced by Cr in the Ti-Zr-V-Mn-Ni-based alloys to improve their cycle life. The effects of Cr substitution on microstructures and the electrochemical characteristics of the alloys are investigated. It is found that Cr substitution is very effective to improve the cyclic durability of the alloys although the discharge capacity decreases with changing x from 0.05 to 0.20. Some kinetic performances have been also investigated using electrochemical impedance spectroscopy (EIS) and potentiostatic discharge technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Electrical Resistance Tomography (ERT) technique possesses great potential in monitoring widely exiting industrial two/multi-phase flow. For vertical pipe flow and inclined pipe flow, some application studies with exciting results have been reported, but there is rarely a paper regarding the application of ERT to horizontal gas/liquid pipe flow. This paper addresses this issue and proposes a smart method, Liquid Level Detection method, to conventional ERT system. The enhanced ERT system using the new method can monitor horizontal pipe flow effectively and its application is no longer restricted by the flow conditions. Some experimental results from monitoring an air/water slug pipe flow are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 3-D numerical model for pulsed laser transformation hardening (LTH) is developed using the finite element method. In this model, laser spatial and temporal intensity distribution, temperature-dependent thermophysical properties of material, and multi-phase transformations are considered. The influence of laser temporal pulse shape on connectivity of hardened zone, maximum surface temperature of material and hardening depth is numerically investigated at different pulse energy levels. Results indicate that these hardening parameters are strongly dependent on the temporal pulse shape. For the rectangular temporal pulse shape, the temperature field obtained from this model is in excellent agreement with analytical solution, and the predicted hardening depth is favorably compared with experimental one. It should be pointed out that appropriate temporal pulse shape should be selected according to pulse energy level in order to achieve desirable hardening quality under certain laser spatial intensity distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel pulsed laser surface processing technology is introduced, which can make use of the spatial and temporal profile of laser pulse to obtain ideal hardening parameters. The intensity distribution of laser pulse is spatially and temporally controlled by using laser shape transformation technology. A 3D numerical model including multi-phase transformations is established to explore material microstructure evolution induced by temperature field evolution. The influences of laser spatial-temporal profiles on hardening parameters are investigated. Different from the continuous laser processing technology, results indicate that spatial and temporal profiles are important factors in determining processing quality during pulsed laser processing method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Czochralski (Cz) technique, which is used for growing single crystals, has dominated the production of single crystals for electronic applications. The Cz growth process involves multiple phases, moving interface and three-dimensional behavior. Much has been done to study these phenomena by means of numerical methods as well as experimental observations. A three-dimensional curvilinear finite volume based algorithm has been developed to model the Cz process. A body-fitted transformation based approach is adopted in conjunction with a multizone adaptive grid generation (MAGG) technique to accurately handle the three-dimensional problems of phase-change in irregular geometries with free and moving surfaces. The multizone adaptive model is used to perform a three-dimensional simulation of the Cz growth of silicon single crystals.Since the phase change interface are irregular in shape and they move in response to the solution, accurate treatment of these interfaces is important from numerical accuracy point of view. The multizone adaptive grid generation (MAGG) is the appropriate scheme for this purpose. Another challenge encountered is the moving and periodic boundary conditions, which is essential to the numerical solution of the governing equations. Special treatments are implemented to impose the periodic boundary condition in a particular direction and to determine the internal boundary position and shape varying with the combination of ambient physicochemical transport process and interfacial dynamics. As indicated above that the applications and processes characterized by multi-phase, moving interfaces and irregular shape render the associated physical phenomena three-dimensional and unsteady. Therefore a generalized 3D model rather than a 2D simulation, in which the governing equations are solved in a general non-orthogonal coordinate system, is constructed to describe and capture the features of the growth process. All this has been implemented and validated by using it to model the low pressure Cz growth of silicon. Accuracy of this scheme is demonstrated by agreement of simulation data with available experimental data. Using the quasi-steady state approximation, it is shown that the flow and temperature fields in the melt under certain operating conditions become asymmetric and unsteady even in the absence of extrinsic sources of asymmetry. Asymmetry in the flow and temperature fields, caused by high shear initiated phenomena, affects the interface shape in the azimuthal direction thus results in the thermal stress distribution in the vicinity, which has serious implications from crystal quality point of view.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

超图划分应用于大规模矩阵计算、大规模集成电路等领域.详细地阐述了超图多级划分的算法框架,并提出对划分结果进行优化的一种手段,通过进行多阶段的V循环优化,在可以接受的运行时间内得到对超图的一个较优的划分.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

超图划分应用于大规模矩阵计算、大规模集成电路等领域.详细地阐述了超图多级划分的算法框架,并提出对划分结果进行优化的一种手段,通过进行多阶段的循环优化,在可以接受的运行时间内得到对超图的一个较优的划分.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A multi phase model of human blood plasma was developed and the Tb(Ⅲ) speciation in this system was studied. The results show that the speciation of Tb(Ⅲ) depends on the concentration of Tb(Ⅲ). When the concentration of Tb(Ⅲ) is below 4.000×10 -8 mol/L, most of Tb(Ⅲ) exists as soluble species while the concentration of Tb(Ⅲ) is in between 4.000 ×10 -8 mol/L and 1.667×10 -2 mol/L, precipitates(TbPO 4 and Tb 2 (CO 3 ) 3 ) are the dominant species of Tb(Ⅲ). Among soluble Tb(Ⅲ) ...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A multi-phase model of Pr(III) speciation in human interstitial fluid was constructed and insoluble Pr(III) speciation was studied. When the total concentration of Pr(III) is below 8.401E-10 mol/L, soluble Pr(III) species are main species. With rising the total concentration of Pr(III), Pr(III) is firstly bound to phosphate to form precipitate of PrPO4, then bound to carbonate and another precipitate of Pr-2(CO3)(3) was obtained. When the total concentration is between 1.583E-9 mol/L and 4.000E-3 mol/L, the insoluble species are predominant Pr(III) species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A multi-phase model was developed and Tb(III) speciation in human blood plasma was studied. At a concentration below 3.744x 10(-4) mol/L (or at the concentration), Tb(III) is mostly bound to phosphate to form precipitate of TbPO4. As the concentration of Tb(III) increases, phosphate is exceeded and another kind of precipitate of Tb-2(CO3)(3) appears. Among soluble Tb(III) species, Tb(III) mainly distribute in [Tb (Tf)] at low concentration and in [Tb (HSAA, [Tb-2 (Tf)], [Th (IgG)], [Tb (Lactate)](2+), [Tb (CitArgH)] and free Tb(III) at high concentration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major impetus to study the rough surface and complex structure in near surface model is because accuracy of seismic observation and geophysical prospecting can be improved. Wave theory study about fluid-satuated porous media has important significance for some scientific problems, such as explore underground resources, study of earth's internal structure, and structure response of multi-phase porous soil under dynamic and seismic effect. Seismic wave numerical modeling is one of the effective methods which understand seismic propagation rules in complex media. As a numerical simulation method, boundary element methods had been widely used in seismic wave field study. This paper mainly studies randomly rough surface scattering which used some approximation solutions based on boundary element method. In addition, I developed a boundary element solution for fluid saturated porous media. In this paper, we used boundary element methods which based on integral expression of wave equation to study the free rough surface scattering effects of Kirchhoff approximation method, Perturbation approximation method, Rytov approximation method and Born series approximation method. Gaussian spectrum model of randomly rough surfaces was chosen as the benchmark model. The approximation methods result were compared with exact results which obtained by boundary element methods, we study that the above approximation methods were applicable how rough surfaces and it is founded that this depends on and ( here is the wavenumber of the incident field, is the RMS height and is the surface correlation length ). In general, Kirchhoff approximation which ignores multiple scatterings between any two surface points has been considered valid for the large-scale roughness components. Perturbation theory based on Taylor series expansion is valid for the small-scale roughness components, as and are .Tests with the Gaussian topographies show that the Rytov approximation methods improves the Kirchhoff approximation in both amplitude and phase but at the cost of an extra treatment of transformation for the wave fields. The realistic methods for the multiscale surfaces come with the Born series approximation and the second-order Born series approximation might be sufficient to guarantee the accuracy of randomly rough surfaces. It could be an appropriate choice that a complex rough surface can be divided into large-, medium-, and small-scale roughness components with their scattering features be studied by the Kirchhoff or Rytov phase approximations, the Born series approximation, and the perturbation theory, respectively. For this purpose, it is important to select appropriate parameters that separate these different scale roughness components to guarantee the divided surfaces satisfy the physical assumptions of the used approximations, respectively. In addition, in this paper, the boundary element methods are used for solving the porous elastic wave propagation and carry out the numerical simulation. Based on the fluid-saturated porous model, this paper analyses and presents the dynamic equation of elastic wave propagation and boundary integral equation formulation of fluid saturated porous media in frequency domain. The fundamental solutions of the elastic wave equations are obtained according to the similarity between thermoelasticity and poroelasticity. At last, the numerical simulation of the elastic wave propagation in the two-phase isotropic media is carried out by using the boundary element method. The results show that a slow quasi P-wave can be seen in both solid and fluid wave-field synthetic seismograms. The boundary element method is effective and feasible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis focuses on the present-day thermal field features, evolution and their connections to hydrocarbon generation of the three continental margin basins-the Yinggehai (Yingge Sea), Qiongdongnan(southeast Qiong), and Pear River Mouth basins-in northern South China Sea, based on available data from drillings, loggings, seismic cross-sections, BHTs, thermal indicators (Ro%, inclusion, etc) and geopressure measurements. After studying of present-day distribution of geothermal field and thermal disturbance of fluid in the sedimentary strata, the author discovered that the distribution of gas fields in Yinggehai Basin are closely related to the distribution of anomalously high thermal gradient area, whereas it is not the case for the Pear River Mouse Basin. And detailed processing of the fluid inclusion data indicates that geothermal fluids activated frequently in this area, and they may mainly be derived upward from the overpressure and hydrocarbon-generating beds, 3000-4500 m in depth. Therefore, the abnormal gradients in sedimentary beds were mainly caused by the active geothermal fluids related to hydrocarbon migrating and accumulating in this area. Because of the effect of overpressure retarding on vitrinite reflectance, the thermal indicators for thermal history reconstruction should be assessed before put into use. Although some factors, such as different types of kerogen, heating ratio, activities of thermal fluids and overpressure, may have effects on the vitrinite reflectance, under the circumstance that thermal fluids and overpressure co-exist, overpressure retarding is dominant. And the depth and correction method of overpressure retarding were also determined in this paper. On the basis of reviewing the methods of thermal history studies as well as existing problems, the author believes that the combination of thermal-indicator-inversion and tectono-thermal modeling is an effective method of the thermal history reconstruction for sedimentary basins. Also, a software BaTherMod for modeling thermal history of basins was successfully developed in this work. The Yinggehai Basin has been active since Tertiary, and this was obviously due to its tectonic position-the plate transition zone. Under the background of high thermal flow, long-term quick subsidence and fluid activities were the main reasons that lead to high temperature and overpressure in this basin. The Zhujiangkou Basin, a Tertiary fault-basin within the circum-Pacific tectonic realm, was tectonically controlled by the motion of the Pacific Plate and resembles the other petroliferous basins in eastern China. This basin developed early, and characterized intensive extension in the early stage and weak activity in the later stage of its development. Whereas the Qiongdongnan Basin was in a weak extension early and intensity of extension increased gradually. The relative geographical locations and the extensional histories of three basins ilustrate that the northern continental margin of South China Sea spread from south to north. On the other hand, the Qiongdongnan and Yinggehai Basins may have been controlled by the same tectonic regime since later Tertiary, whereas the Zhujiangkou Basin was not meaningfully influenced. So, the tectono-thermal evolution character of the Qiongdonnan basin should be closely to the other two. It may be concluded that the three basins have been developed within the active continental margin since Tertiary, and the local lithosphere might undergo intensive extension-perhaps two or three times of episodic extension occurred. Extension lead to large tectonoc subsidence and extreme thick Tertiary sediments for hydrocarbon generation in the basins. In response to the periodic extension of the basins, the palaeothermal flow were also periodical. The three basins all have the characteristics of multi-phase thermal evolutions that is good for oil-gas generation. And the overpressure expands the depth range of oil-gas habitat, which is meaningful to petroleum exploration in this region.