16 resultados para Mouth rehabilitation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A depth-integrated two-dimensional numerical model of current, salinity and sediment transport was proposed and calibrated by the observation data in the Yangtze River Estuary. It was then applied to investigate the flow and sediment ratio of the navigati

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between otolith weight (OW) and the age of marine fish is studied. A total of 222 individuals of bighead white croaker, Pennahia macrocephalus were sampled seasonally in the mouth of the Beibu Gulf, the South China Sea, in 2007. Since there are no significant differences in sagittal OW between otolith in pairs (Pa parts per thousand yen0.05), the undamaged left sagittal otolith is used for age determination. The highest correlations among standard length, OW and fish ages are confirmed by linear, exponential and multinomial regression. Results show that sagittal OW overlaps only occasionally among age groups, and to individuals with similar standard length, the older and slower-growing fish has a heavier otolith because of the continued otolith material deposition. There are differences in sagittal OW among different age groups and significant positive linear relationship with age (P < 0.05). The age readings can be verified by plotting the sagittal OW versus the standard length for age groups, and the individuals with similar standard length but in different ages can be separated by sagittal OW frequency analysis. Mostly, the predicted ages using the regression between sagittal OW and ages are closed to the observed ages by counting annulus on scale. It indicates that the sagittal OW analysis is a useful technique for validating the accuracy of age determination by annuli counts, especially for individuals of similar size. Furthermore, the technique is applied for Pennahia macrocephalus with discussion in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative studies on the evolution and dynamics of the deepwater area of Pearl River Mouth basin (PRMB) were carried out based on the latest geological and seismic data. The study area is generally in an extensional state during the Cenozoic. The major extension happened in the earlier syn-rift stages before 23 Ma and the extension after 23 Ma is negligible. Two rapid subsidence periods, 32-23 Ma and 5.3-2.6 Ma, are identified, which are related to the abrupt heat decay during margin breakup and the collision between the Philippine Sea plate and the Eurasian plate, respectively. The strongest crustal thinning in the Baiyun (sic) sag may trigger the syn-rift volcanism along the weak faulted belt around the sag. The Cenozoic tectonic evolution of the study area could be divided into five stages: rifting (similar to 50-40 Ma), rift-drift transition (similar to 40-32 Ma), early post-breakup (similar to 32-23 Ma), thermal subsidence (similar to 23-5.3 Ma) and neotectonic movement (similar to 5.3-0 Ma).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

River training walls have been built at scores of locations along the NSW coast and their impacts on shoreline change are still not fully understood. In this study, the Brunswick River entrance and adjacent beaches are selected for examination of the impact of the construction of major training walls. Thirteen sets of aerial photographs taken between 1947 and 1994 are used in a CIS approach to accurately determine tire shoreline Position, beach contours and sand volumes, and their changes in both time and space, and then to assess the contribution of both tire structures and natural hydrodynamic conditions to large scale (years-decades and kilometres) beach changes. The impact of the training walls can be divided into four stages: natural conditions prior to their construction (pre 1959), major downdrift erosion and updrift accretion during and. following the construction of the walls in 1959 similar to 1962 and 1966. diminishing impact of the walls between 1966 and 1987, and finally no apparent impact between 1987 similar to 1994. The impact extends horizontally about 8 km updrift and 17 km downdrift, and temporally up to 25 years..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the period of the post-glacial transgression maximum (PGTM), there was a huge trumpet estuary in the modern Changjiang River Delta area. The location and the shape of the Paleo-Changjiang River Estuary (PCRE) were much different from those of the present Changjiang River Estuary. The study on the change of characteristics of tidal wave in the Changjiang River mouth area since the PGTM can help to understand better the dynamic development of the Changjiang River Delta. The course curves of tidal level and tidal current velocity during a single tidal cycle for 35 points are calculated, and characteristics of tidal waves in the PCRE and its adjacent area are compared with those of tidal waves in the modern Changjiang River mouth area. The results show that the tidal waves within the PCRE and in its adjacent area during the period of the PGTM belonged to standing wave or a mixture of standing wave and progressive wave. Since then, the tidal wave in the Changjiang River mouth become gradually to be progressive wave with the PCRE being filled and the Changjiang River mouth shifting southeastwards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of the Huanghe (Yellow) River outflows on its estuary was investigated with river gauging and shipboard hydrographic observations. The river flux has been decreasing dramatically; the discharges of water and sediment in the 1990s dropped to 27.4% and 31.9% of those in the 1950s, respectively, resulting in frequent and lengthy events of downstream channel dry-up since the 1970s. There were accumulatively 897 zero-flow days during the 1990s in the river course below the Lijin Hydrological Station, 100 km upstream from the river mouth, which is 82.4% of that in 1972. As freshwater input decreases, river-borne nutrients to the estuarine increased significantly. Concentration of dissolved inorganic nitrogen (DIN) in the 1990s was four times of that in 1950s. Changes in amount and content of the riverine inputs have greatly affected the estuarine ecosystem. Over the past several decades, sea surface temperature and salinity in the estuary and its adjacent waters increased and their distribution pattern altered in response to the reduction of freshwater inflow. The distribution of and seasonal succession in nutrient concentrations in the surface layer have also changed with a shift of river outlet and the decrease in riverine nutrient loads. Furthermore, deterioration of estuarine ecosystem by less river input has decreased primary productivity in the deltaic region waters, and in turn depressed the fishery. (C) 2008 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the recent (1970s-1990s) processes of river mouth bar formation, riverbed aggradation and distributary migration in the Huanghe River mouth area, in the light of station-based monitoring, field measurements and remote sensing interpretation. The results show that the morphological changes of the river mouth bar have been closely associated with the largely reduced fluvial discharge and sediment load. Landforrn development such as bar progradation occurred in two phases, i.e. before and after 1989, which correspond to faster and lower bar growth rates, respectively. Fast riverbed aggradation in the mouth channel was strongly related to river mouth bar progradation. During 1976-1996, about 2.8% of the total sediment loads were deposited in the river channel on the upper to middle delta. Therefore, the river water level rose by a few meters from 1984 to 1996. The frequent distributary channel migration, which switched the radial channel pattern into the SE-directed pattern in the mid-1980s, was linked with mouth bar formation. Marine conditions also constrain seaward bar progradation. Furthermore, the history of river mouth bar formation reflects human impacts, such as dredging and dyking in order to stabilize the coastal area. (c) 2005 Elsevier B.V. All rights reserved.