17 resultados para Motor cortex

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The D2 dopamine (DA) receptor agonist, quinpirole, was characterized in young adult monkeys, young reserpine-treated monkeys and aged monkeys to assess the contribution of DA to age-related loss of prefrontal cortical (PFC) cognitive function, Monkeys were tested on a delayed response memory task that depends on the PFC, and a fine motor task that taps the functions of the motor cortex, In young adult monkeys, low quinpirole doses impaired performance of the PFC and fine motor tasks, while higher doses improved memory performance and induced dyskinesias and ''hallucinatory-like'' behaviors. The pattern of the quinpirole response in reserpine-treated monkeys suggested that the impairments in delayed response and fine motor performance resulted from drug actions at D2 autoreceptors, while the improvement in delayed response performance, dyskinesias and ''hallucinatory-like'' behaviors resulted from actions at postsynaptic receptors. In aged monkeys, low doses of quinpirole continued to impair fine motor performance, but lost their ability to impair delayed response performance. The magnitude of cognitive improvement and the incidence of ''hallucinatory-like'' behaviors were also reduced in the aged animals, suggesting some loss of postsynaptic D2 receptor function, The pattern of results is consistent with the greater loss of DA from the PFC than from motor areas in aged monkey brain (Goldman-Rakic and Brown, 1981; Wenk et al., 1989), and indicates that DA depletion contributes significantly to age-related cognitive decline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dopamine (DA) D-1 receptor compounds were examined in monkeys for effects on the working memory functions of the prefrontal cortex and on the fine motor abilities of the primary motor cortex. The D-1 antagonist, SCH23390, the partial D-1 agonist, SKF38393, and the full D-1 agonist, dihydrexidine, were characterized in young control monkeys, and in aged monkeys with naturally occurring catecholamine depletion. In addition, SKF38393 was tested in young monkeys experimentally depleted of catecholamines with chronic reserpine treatment. Injections of SCH23390 significantly impaired the memory performance of young control monkeys, but did not impair aged monkeys with presumed catecholamine depletion. Conversely, the partial agonist, SKF38393, improved the depleted monkeys (aged or reserpine-treated) but did not improve young control animals. The full agonist, dihydrexidine, did improve memory performance in young control monkeys, as well as in a subset of aged monkeys. Consistent with D, receptor mechanisms, agonist-induced improvements were blocked by SCH23390. Drug effects on memory performance occurred independently of effects on fine motor performance. These results underscore the importance of DA D-1 mechanisms in cognitive function, and provide functional evidence of DA system degeneration in aged monkeys. Finally, high doses of D-1 agonists impaired memory performance in aged monkeys, suggesting that excessive D-1 stimulation may be deleterious to cognitive function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the 19th century, people have long believed that the function of cerebellum was restricted to fine motor control and modulation. In the past two decades, however, more and more studies challenged this traditional view. While the neuroanatomy of the cerebellum from cellular to system level has been well documented, the functions of this neural organ remain poorly understood. This study, including three experiments, attempted to further the understanding of cerebellar functions from different viewpoints. Experiment One used the parametric design to control motor effects. The activation in cerebellum was found to be associated with the difficulty levels of a semantic discrimination task, suggesting the involvement of the cerebellum in higher level of language functions. Moreover, activation of the right posterior cerebellum was found to co-vary with that of the frontal cortex. Experiment Two adopted the cue-go paradigm and event-related design to exclude the effects of phonological and semantic factors in a mental writing task. The results showed that bilateral anterior cerebellum and cerebral motor regions were significantly activated during the task and the hemodynamic response of the cerebellum was similar to those of the cerebral motor cortex. These results suggest that the cerebellum participates in motor imagination during orthographic output. Experiment Three investigated the learning process of a verb generation task. While both lateral and vermis cerebellum were found to be activation in the task, each was correlated a separate set of frontal regions. More importantly, activations both in the cerebellum and frontal cortex decreased with the repetition of the task. These results indicate that the cerebellum and frontal cortex is jointly engaged in some functions; each serves as a part of a single functional system. Taken these findings together, the following conclusions can be drawn: 1.The cerebellum is not only involved in functions related to speech or articulation, but also participates in the higher cognitive functions of language. 2.The cerebellum participates in various functions by supporting the corresponding regions in cerebral cortex, but not directly executes the functions as an independent module. 3.The anterior part of cerebellum is related to motor functions, whereas the posterior part is involved in cognitive functions. 4.While the motor functions rely on the engagement of both sides of the cerebellar hemispheres, the higher cognitive functions mainly depend on the right cerebellum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

眶额叶皮质与中脑边缘多巴胺奖赏系统有着复杂的相互纤维联系.先前的研究探讨了药物成瘾过程中眶额叶皮质的脑电活动.在本实验中,将探讨食物奖赏和渴求过程中该皮质的脑电活动.实验采用了两个环境:对照环境和食物刺激相关的环境.首先,训练大鼠在食物刺激相关的环境中吃巧克力花生豆,而后在该环境中设置两种不同的刺激方式:能看到和闻到但不能吃到(渴求实验),或者仍旧可以吃到巧克力花生豆(奖赏实验):同时进行左侧眶额叶皮质的脑电记录.结果发现,在食物刺激相关的环境中大鼠Delta频段(2-4Hz)的脑电活动与食物刺激显著相关,此外,与在对照环境中相比,其相对功率在食物渴求时下降而在食物奖赏时升高.本实验表明,食物相关的奖励可以改变大鼠眶额叶皮质的脑电活动,而且,Delta频段的脑电活动能够作为监测该奖励的一个指标.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is focused on the contribution of area 7 to the short-term visual spatial memory. Three rhesus monkeys (Macaca mulatta) were trained in the direct delayed response task in which 5 delay intervals were used in each session. When each monkey reached the criterion of 90% correct responses in 5 successive sessions, two monkeys underwent a surgery while the other one received a sham operation as a control. In the first stage of the surgery, bilateral areas 7a, 7b and 7ip of the parietal cortex of two monkeys were precisely lesioned. After 7 days of recuperation, the monkeys were required to do the same task. The average percentage of correct responses in the lesioned animals decreased from 94.7% to 89.3% and 93.3% to 82.0% respectively (no significance, P > 0.05, n = 2). In addition, the monkeys' complex movements were mildly impaired. The lesioned monkeys were found to have difficulty picking up food from the wells. In the second stage, bilateral area 7m was lesioned. In the 5 postoperative sessions, the average percentage of correct responses in one monkey, with a relatively precise 7m lesion, decreased from 94.7% to 92.2% (no significance, P > 0.05), while the other monkey, with widely spread necrosis of lateral parietal cortex, showed an. obvious decline in performance, but still over the chance level. After 240 trials this monkey reattained the normal criterion. The results of this research suggest that the lesions of area 7 of the parietal cortex did not significantly affect the short-term visual spatial memory, which has been shown to be sensitive to lesions of the prefrontal cortex; they also support the notion of dissociation of spatial functions in the prefrontal and parietal cortices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monkeys with lesions of areas 9 and 46 performed three variants of the spatial delayed response (SDR) task. There were no impairments in allocentric spatial memory in which geometrical relationships between environmental cues were used to identify spatial location; thus, memory of a 3D environmental map is intact. In contrast, there were severe impairments in egocentric spatial memory guided by visual or tactile cues that monkeys can relate to their viewing perspective during testing. These results strongly suggest that dorsolateral prefrontal cortex selectively mediates spatial memory tasks that are solved by referencing the location of targets to the body's orientation. (C) 2003 Lippincott Williams Wilkins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigating the activities of the prefrontal cortex (PFC) in the process of addiction is valuable for understanding the neural mechanism underlying the impairments of the PFC after drug abuse. However, limited data are obtained from primate animals and few studies analyze Electroencephalogram (EEG) in the gamma band, which plays an important role in cognitive functions. In addition, it is yet unclear whether drug abuse affects the orbitofrontal cortex (OFC) and dorsolateral PFC (DLPFC) - the two most important subregions of the PFC - in similar ways or not. The aim of this study is to address these issues. We recorded EEG in the OFC and DLPFC in three rhesus monkeys. All animals received a course of saline (NaCl 0.9%, 2 ml) injection (5 days) followed by 10 days of morphine injection (every 12 h), and then a further series of saline injection (7 days). A main finding in the present study was that morphine decreased EEG power in all frequency bands in a short period after injection in both the OFC and DLPFC in monkeys. And gamma power decreased not just in short period after morphine injection but lasted to 12 h after injection. Moreover, we found that although the changes in EEG activities in the OFC and DLPFC at 30-35 min after injection were similar, the DLPFC was more sensitive to the effect of morphine than the OFC. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the effects of chronic morphine treatment and its cessation on thalamus and the somatosensory cortex, an ex vivo high resolution (500 MHz) H-1 nuclear magnetic resonance spectroscopy (NMRS), in the present study, was applied to detect multi

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ex vivo H-1 NMR spectroscopy was used to measure changes in the concentrations of cerebral metabolites in the prefrontal cortex (PFC) and hippocampus of rats subjected to repeated morphine treatment known to cause tolerance/dependence. The results show th

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies of the dorsomedial frontal cortex (DMF) and the prefrontal cortex (PF) have shown that, when monkeys respond to nonspatial features of a discriminative stimulus (e.g., color) and the stimulus appears at a place unrelated to the movement t

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prefrontal cortex (PFC) has a central role in working memory (WM). Resistance to distraction is considered a fundamental feature of WM and PFC neuronal activity. However, although unexpected stimuli often disrupt our work, little is known about the un

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Navigated transcranial magnetic stimulation (TMS) combined with diffusion-weighted magnetic resonance imaging (DW-MRI) and tractography allows investigating functional anatomy of the human brain with high precision. Here we demonstrate that working memory (WM) processing of tactile temporal information is facilitated by delivering a single TMS pulse to the middle frontal gyrus (MFG) during memory maintenance. Facilitation was obtained only with a TMS pulse applied to a location of the MFG with anatomical connectivity to the primary somatosensory cortex (S1). TMS improved tactile WM also when distractive tactile stimuli interfered with memory maintenance. Moreover, TMS to the same MFG site attenuated somatosensory evoked responses (SEPs). The results suggest that the TMS-induced memory improvement is explained by increased top-down suppression of interfering sensory processing in S1 via the MFG-S1 link. These results demonstrate an anatomical and functional network that is involved in maintenance of tactile temporal WM. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Healthy siblings of schizophrenia patients have an almost 9-fold higher risk for developing the illness than the general population. Disruption of white matter (WM) integrity as indicated by reduced fractional anisotropy (FA) derived from diffusion tensor

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extract of Ginkgo biloba is used to alleviate age-related decline in cognitive function, which may be associated with the loss of catecholamines in the prefrontal cortex. The purpose of this study was to verify whether alpha-2 adrenergic activity is involved in the facilitative effects of extract of Ginkgo biloba on prefrontal cognitive function. Male Wistar rats were trained to reach criterion in the delayed alternation task (0, 25, and 50-s delay intervals). A pilot study found that 3 or 4 mg/kg of yohimbine (intraperitoneal) reduced the choice accuracy of the delayed alternation task in a dose and delay-dependent manner, without influencing motor ability or perseverative behaviour. Acute oral pre-treatment with doses of 50, 100, or 200 mg/kg (but not 25 mg/kg) of extract of Ginkgo biloba prevented the reduction in choice accuracy induced by 4 mg/kg yohimbine. These data suggest that the prefrontal cognition-enhancing effects of extract of Ginkgo biloba are related to its actions on alpha-2-adrenoceptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain structure and function experience dramatic changes from embryonic to postnatal development. Microarray analyses have detected differential gene expression at different stages and in disease models, but gene expression information during early brain development is limited. We have generated >27 million reads to identify mRNAs from the mouse cortex for>16,000 genes at either embryonic day 18 (E18) or postnatal day 7 (P7), a period of significant synapto-genesis for neural circuit formation. In addition, we devised strategies to detect alternative splice forms and uncovered more splice variants. We observed differential expression of 3,758 genes between the 2 stages, many with known functions or predicted to be important for neural development. Neurogenesis-related genes, such as those encoding Sox4, Sox11, and zinc-finger proteins, were more highly expressed at E18 than at P7. In contrast, the genes encoding synaptic proteins such as synaptotagmin, complexin 2, and syntaxin were up-regulated from E18 to P7. We also found that several neurological disorder-related genes were highly expressed at E18. Our transcriptome analysis may serve as a blueprint for gene expression pattern and provide functional clues of previously unknown genes and disease-related genes during early brain development.