4 resultados para Mothers and sons
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This study was conducted to measure the levels of 23 PCB congeners and 6 organochlorine pesticides (OCPs) in human milk and three food types collected from Luqiao and Pingqiao in Zhejiang Province, China. An effort was also made to explore the potential health risk for the mothers and breast-fed infants living in these two localities. Luqiao was selected as the sampling site because it is the largest place for the disassembly of obsolete transformers and electrical waste in China. Pingqiao, located 100 kin NW of Luqiao, is not known to be a place for any electronic or electrical waste and hence was chosen as the control site. Both localities are important agricultural places in the province. The organochlorines were measured in the samples using the GC-PECD technique. Micro-EROD bioassay method was also used as a complement of the chemical analysis to estimate the TEQ levels of dioxin-like PCBs in human milk. The data showed that the human milk, rice, hen egg, and fish samples from Luqiao were more heavily contaminated with PCBs than those from Pingqiao, suggesting that the mothers and their breast-fed infants in Luqiao tended to receive greater exposure to PCBs than those living in Pingqiao. The OCP levels in the two localities were found comparable, suggesting that the major source of contamination with these pesticides was from their agricultural uses. Significant correlation (R-2 = 0.87, P < 0.001) of PCB TEQs was found between the bioassay and chemical analysis method, suggesting that micro-EROD is an effective method for comprehensive determination of TEQ levels in human milk. Comparison with literature data showed that the PCB levels in milk samples from Luqiao were significantly higher than those from localities in other Chinese provinces and comparable to those in developed or industrialized countries. (c) 2007 Published by Elsevier B.V.
Resumo:
The developments of physical aging in phenolphthalein poly(aryl-ether-ketone) (PEK-C) and poly(aryl-ether-sulfone) (PES-C) with time at two aging temperatures up to 20 K below their respective glass transition temperatures (T-g = 495 and 520 K) have been studied using differential scanning calorimetry (DSC). Substantial relaxation within the aging course of several hours were observed by detecting T-g decreasing during physical aging process at the two aging temperatures. The relaxation processes of both polymers are extremely nonlinear and self-retarding. The time dependencies of their enthalpies during the initial stages of annealing were approximately modeled using the Narayanaswamy-Tool model. The structure relaxation parameters obtained from this fitting were used to predict the possibility of physical aging occurring at their respective using temperatures. (C) 1995 John Wiley and Sons, Inc.
Resumo:
A series of tensile and three-point bending studies was conducted at various temperatures and loading rates using phenolphthalein polyether ketone (PEK-C). Yield stress, Young's modulus, fracture toughness, and crack opening displacement data were obtained for various conditions. In general, both yield stress and Young's modulus increase with decreasing temperature. However, the relationships between fracture toughness, loading rate, and temperature are very complex. This behavior is due to the simultaneous intersection of viscoelasticity and localized plastic deformation. The increased yield stress is the main factor contributing to the reduction in fracture toughness and crack opening displacement. The relationship between fracture toughness and yield stress are discussed. (C) 1995 John Wiley and Sons, Inc.
THERMAL AND MECHANICAL-PROPERTIES OF PHENOLPHTHALEIN POLYETHERSULFONE POLY(PHENYLENE SULFIDE) BLENDS
Resumo:
The thermal and mechanical properties of phenolphthalein polyethersulfone/poly(phenylene sulfide) (PES-C/PPS) blends were studied using a differential scanning calorimeter, a dynamic mechanical analyzer, and mechanical characterization. The morphologies of fracture surfaces were observed by scanning electron microscopy. The blends are multiphase systems with strong interaction between the two phases. It is of interest that, although the strength and ductility of PPS are lower than those of PES-C, the addition of PPS can improve markedly the impact strength of PES-C without changing its higher strength. The PPS can also act as a flow aid for PES-C. (C) 1995 John Wiley and Sons, Inc.