12 resultados para Mory,a.j. Et-al.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of starvation on larvae of Ivory shell Babylonia formosae habei was studied in a laboratory experiment. Newly hatched veligers showed considerable tolerance to starvation due to their endogenous yolk material, and time to the point-of-no-return (PNR; the threshold point during starvation after which larvae can longer metamorphose even if food is provided) was calculated to be 104.5 h. However, starvation still affected larval growth, survival, and metamorphosis. Mean shell length of larvae increased 49.77 mum day(-1) for nonstarved, but only 11.13 mum day (-1) for larvae starved for 108 h. After larvae began feeding, their growth rates rapidly recovered to the level of the nonstarved following short periods of starvation (less than 48 h), but were inhibited and unable to ever reach the level of the nonstarved when being starved beyond 48 h. Percent metamorphosis was 53.75% for the nonstarved, but all larvae died before 10 days for those starved for 108 h. Starvation not only affected larval time to reach metamorphosis, but also caused the delay in the time to metamorphosis. For the nonstarved, larvae took only 11.5 days to reach spontaneous metamorphosis, but they took 20 days to reach spontaneous metamorphosis when starved for 96 h, and this duration of delayed metamorphosis reached 8.5 days. Furthermore, the importance of yolk material for maintaining larval survival of B. formosae habei during starvation periods is also discussed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The freshwater testate amoeba Difflugia tuberspinifera Hu et al. 1997 collected from pond and lake in China, is investigated by light and scanning electron microscopy. This little known taxon is redescribed and its morphology, biometry and ecology are supplied. After carefully comparison with other six similar species including Difflugia bartosi Stepanek, D. corona Wallich, D. corona cashi Deflandre, D. corona tuberculata Vucetich, D. muriformis Gauthier-Lievre et Thomas and Netzelia tuberculata (Wallich) Netzal we believe that the sub-spherical to spherical shell, the mulberry-shaped appearance, the 7-10 apertural tooth-like structures, the short collar and the conical spines numbering from 4 to 8 at the upper equatorial region in D. tuberspinifera set it apart from other species. Besides, statistical analysis indicates that D. tuberspinifera is a size-monomorphic species characterized by a main-size class and a small size range and the shell height is significant correlated with other morphometric characters at p < 0.05 excepting the number of aperture tooth-like structures and the number of spines. Moreover, D. tuberspinifera inhabits not only lotic but also lentic environment.