5 resultados para Morocco -- Economic conditions
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Based on the fractal theories, contractive mapping principles as well as the fixed point theory, by means of affine transform, this dissertation develops a novel Explicit Fractal Interpolation Function(EFIF)which can be used to reconstruct the seismic data with high fidelity and precision. Spatial trace interpolation is one of the important issues in seismic data processing. Under the ideal circumstances, seismic data should be sampled with a uniform spatial coverage. However, practical constraints such as the complex surface conditions indicate that the sampling density may be sparse or for other reasons some traces may be lost. The wide spacing between receivers can result in sparse sampling along traverse lines, thus result in a spatial aliasing of short-wavelength features. Hence, the method of interpolation is of very importance. It not only needs to make the amplitude information obvious but the phase information, especially that of the point that the phase changes acutely. Many people put forward several interpolation methods, yet this dissertation focuses attention on a special class of fractal interpolation function, referred to as explicit fractal interpolation function to improve the accuracy of the interpolation reconstruction and to make the local information obvious. The traditional fractal interpolation method mainly based on the randomly Fractional Brown Motion (FBM) model, furthermore, the vertical scaling factor which plays a critical role in the implementation of fractal interpolation is assigned the same value during the whole interpolating process, so it can not make the local information obvious. In addition, the maximal defect of the traditional fractal interpolation method is that it cannot obtain the function values on each interpolating nodes, thereby it cannot analyze the node error quantitatively and cannot evaluate the feasibility of this method. Detailed discussions about the applications of fractal interpolation in seismology have not been given by the pioneers, let alone the interpolating processing of the single trace seismogram. On the basis of the previous work and fractal theory this dissertation discusses the fractal interpolation thoroughly and the stability of this special kind of interpolating function is discussed, at the same time the explicit presentation of the vertical scaling factor which controls the precision of the interpolation has been proposed. This novel method develops the traditional fractal interpolation method and converts the fractal interpolation with random algorithms into the interpolation with determined algorithms. The data structure of binary tree method has been applied during the process of interpolation, and it avoids the process of iteration that is inevitable in traditional fractal interpolation and improves the computation efficiency. To illustrate the validity of the novel method, this dissertation develops several theoretical models and synthesizes the common shot gathers and seismograms and reconstructs the traces that were erased from the initial section using the explicit fractal interpolation method. In order to compare the differences between the theoretical traces that were erased in the initial section and the resulting traces after reconstruction on waveform and amplitudes quantitatively, each missing traces are reconstructed and the residuals are analyzed. The numerical experiments demonstrate that the novel fractal interpolation method is not only applicable to reconstruct the seismograms with small offset but to the seismograms with large offset. The seismograms reconstructed by explicit fractal interpolation method resemble the original ones well. The waveform of the missing traces could be estimated very well and also the amplitudes of the interpolated traces are a good approximation of the original ones. The high precision and computational efficiency of the explicit fractal interpolation make it a useful tool to reconstruct the seismic data; it can not only make the local information obvious but preserve the overall characteristics of the object investigated. To illustrate the influence of the explicit fractal interpolation method to the accuracy of the imaging of the structure in the earth’s interior, this dissertation applies the method mentioned above to the reverse-time migration. The imaging sections obtained by using the fractal interpolated reflected data resemble the original ones very well. The numerical experiments demonstrate that even with the sparse sampling we can still obtain the high accurate imaging of the earth’s interior’s structure by means of the explicit fractal interpolation method. So we can obtain the imaging results of the earth’s interior with fine quality by using relatively small number of seismic stations. With the fractal interpolation method we will improve the efficiency and the accuracy of the reverse-time migration under economic conditions. To verify the application effect to real data of the method presented in this paper, we tested the method by using the real data provided by the Broadband Seismic Array Laboratory, IGGCAS. The results demonstrate that the accuracy of explicit fractal interpolation is still very high even with the real data with large epicenter and large offset. The amplitudes and the phase of the reconstructed station data resemble the original ones that were erased in the initial section very well. Altogether, the novel fractal interpolation function provides a new and useful tool to reconstruct the seismic data with high precision and efficiency, and presents an alternative to image the deep structure of the earth accurately.
Resumo:
Understanding relationship between environmental protection and economic development is crucial to form practical environmental policy. At micro level, implementation of environmental regulations often causes production mills adjustment of technology which might leads to change of productive efficiency and cost, which, in turn, determine effort level of mills and even local government in pollution control. Using a stochastic frontier production model and a set of survey data on 126 paper mills from six provinces of China, we measure the technical efficiency changes and analyze the determinants of efficiency. in particular, we examine impact of environmental policy on paper mills' efficiency, using an indicator of environmental policy-the levy ratio of COD. We also estimate a simultaneous-equation model in which the levy rate and emission are jointly determined. The results indicate that there have been efficiency improvements during 1999-2003, when enforcement of environmental regulations have been tightened. The impacts, nevertheless, are different for different types of mills. We also find the levy ratio, which is influenced by both the local social and economic conditions and the characters of paper mills, such as scale, has strong impact on the abatement of the pollutant-COD. Additionally, paper mills' technical efficiency has positive effect on the reduction of the emission intensity of the pollutant-COD. These results lead a set of implications pertinent to policy improvement.
Resumo:
The present paper studied the school bullying and the primary impact factors, for understanding the nature of bullying, and providing measures and references to the elimination and controlling of school bullying. Primarily with methods of questionnaires and psychometrics, combined with case study and interviews, the following findings were found: in Chinese culture, bullying is a behavior intentionally causing harm to the weaker or weakers. There were 5 types of bullying-physical, social exclusion, threat, breakage and verbal. In Chinese schools the occurrence of bullying had regular patterns. The factor that impact children's bullying behavior was personality traits, interpersonal techniques, family atmosphere, education and upbringing styles. In personality traits, bullies tended to be more extroversive, impulsive, obstinate, obdurate and lack of sympathy. Victims tended to be more introversive, self-restrained, lack of confidence, lonely, anxious and depressive. Both of them expressed more mental problem tendencies than normal children did. When confronted with interpersonal conflicts, they used little problem solving strategies. Bullies had more extroverted emotional responses, and victims had more social support strategies. In the light of family influence, bullies were relatively superior in family's social economic conditions. But their parents had little time and energy spent on them. They tended to be punitive, and had indulgent, reject or despotic upbringing styles. The role of victim might be related to the disadvantage of family's social economic status. Their parents had the tendency of spoiling and overindulgence. The research concluded that in different cultures the connotation of bullying was not homogenous. The occurrence of school bullying had regular patterns. Bullying behavior was primarily influenced by the personality traits of both bullies and victims, the coping strategies of interpersonal conflicts, family's social economic status, parents' basic emotional attitudes, ways of educating, punitive tendencies and school atmosphere. The occurrence of bullying behavior was the result of the combined process of past experience, behavior habits, personality traits, cognitive evaluation, certain evocative clues and the environment conditions. It reminded that quality education and mental health education in schools was essential. Strengthening basic social skill training in school, creating positive family atmosphere, having more communications between schools and families and implementing strict regulations against bullying was essential to interfere and eliminate the school bullying.
Resumo:
The economic seaweed Hizikia fusiforme (Harv.) Okamura (Sargassaceae, Phaeophyta) usually experiences periodical exposures to air at low tide. Photosynthetic carbon acquisition mechanisms were comparatively studied under submersed and emersed conditions in order to establish a general understanding of its photosynthetic characteristics associated with tidal cycles. When submersed in seawater, H fusiforme was capable of acquiring HCO3- as a source of inorganic carbon (Ci) to drive photosynthesis, while emersed and exposed to air, it used atmospheric CO2 for photosynthesis. The pH changes surrounding the H fusiforme fronds had less influence on the photosynthetic rates under emersed condition than under submersed condition. When the pH was as high as 10.0, emersed H fusiforme could photosynthesize efficiently, but the submersed alga exhibited very poor photosynthesis. Extracellular carbonic anhydrase (CA) played an important role in the photosynthetic acquisitions of exogenous Ci in water as well as in air. Both the concentrations of dissolved inorganic carbon in general seawater and CO2 in air were demonstrated to limit the photosynthesis of H fusiforme, which was sensitive to O-2. It appeared that the exogenous carbon acquisition system, being dependent of external CA activity, operates in a way not enough to raise intracellular CO2 level to prevent photorespiration. The inability of H fusiforme to achieve its maximum photosynthetic rate at the current ambient Ci levels under both submersed and emersed conditions suggested that the yield of aquaculture for this economic species would respond profitably to future increases in CO2 concentration in the sea and air.
Resumo:
Based on the implications of a pellet experiment,we have designed and implemented a low temperature(≤90℃) approach to generate native patterned,vertically aligned ZnO nanoarrys without any templates or catalysts.This simple,economic and spontaneous patterning process offers a promising avenue for overcoming several inherent limitations of the artificial manners[1].While the purity,orientation and electrical properties of the as prepared materials allow them to be applied in various fields.