35 resultados para Moroccan continental margin
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The ecological characteristics of the deep-sea amoA-encoding archaea (AEA) are largely unsolved. Our aim was to study the diversity, structure and distribution of the AEA community in the sediments of the tropical West Pacific Continental Margin, to develop a general view of the AEA biogeography in the deep-sea extreme environment. Archaeal amoA clone libraries were constructed. Diverse and novel amoA sequences were identified, with the Bohol Sea, Bashi Strait and Sibuyan Sea harbouring the highest and the Bicol Shelf the lowest AEA diversity. Phylogenetic and statistical analyses illustrate a heterogeneous distribution of the AEA community, probably caused by the differential distribution of the terrestrial or estuarine AEA in the various sampling sites. The deep-sea sedimentary environments potentially harbour diverse and novel AEA in the tropical West Pacific Continental Margin. The stations in the Philippine inland seas (including station 3043) may represent AEA assemblages with various terrestrial influences and the stations connected directly to the open Philippine Sea may represent marine environment-dominant AEA assemblages. Our study indicates the potential importance of geological and climatic events in the transport of terrestrial micro-organisms to the deep-sea sedimentary environments, almost totally neglected previously.
Resumo:
High-resolution multi-channel seismic data and geological samples were collected during two research cruises of the R/V FENDOU 4 in 1999 and 2000. Studies on these data and samples together with results from sites 1143-1145 and 1148 of ODP Leg 184 suggest that the geological structure on the continental slope of the northern South China Sea is favorable for the formation of gas hydrates. Bottom simulating reflectors (BSRs) and geochemical anomalies which indicate the existence of gas hydrates have been recognized in sediments of the Xisha Trough, the Dongsha Rise and the accretionary wedge of the Manila subduction zone. These gas hydrates are generated by two different mechanisms depending on the tectonic regime and the seismic and geochemical characteristics. The first applies to the passive continental margin of the nor-them South China Sea on the Dongsha Rise and in the Xisha Trough. The gas hydrates are associated with diapiric structures, active faults, slumps and gravity flows as well as high Late Cenozoic sedimentation rates. Their seismic expression includes BSRs, seismic blanking zones and velocity anomalies. The second mechanism is operative on the active continental margin along the Manila subduction zone, especially in the accretionary wedge. Here, gas hydrate occurrence is marked by widespread BSRs and acoustic 'pull-down' possibly related to the existence of free gas in the sediments beneath the BSR. The thickness of the seismic blanking zones averages 250 m, suggesting that the stable gas hydrate zone has about the same thickness. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The passive northern continental margin of the South China Sea is rich in gas hydrates, as inferred from the occurrence of bottom-simulating reflectors (BSR) and from well logging data at Ocean Drilling Program (ODP) drill sites. Nonetheless, BSRs on new 2D multichannel seismic reflection data from the area around the Dongsha Islands (the Dongsha Rise) are not ubiquitous. They are confined to complex diapiric structures and active fault zones located between the Dongsha Rise and the surrounding depressions, implying that gas hydrate occurrence is likewise limited to these areas. Most of the BSRs have low amplitude and are therefore not clearly recognizable. Acoustic impedance provides information on rock properties and has been used to estimate gas hydrate concentration. Gas hydrate-bearing sediments have acoustic impedance that is higher than that of the surrounding sediments devoid of hydrates. Based on well logging data, the relationship between acoustic impedance and porosity can be obtained by a linear regression, and the degree of gas hydrate saturation can be determined using Archie's equation. By applying these methods to multichannel seismic data and well logging data from the northern South China Sea, the gas hydrate concentration is found to be 3-25% of the pore space at ODP Site 1148 depending on sub-surface depth, and is estimated to be less than values of 5% estimated along seismic profile 0101. Our results suggest that saturation of gas hydrate in the northern South China Sea is higher than that estimated from well resistivity log data in the gas hydrate stability zone, but that free gas is scarce beneath this zone. It is probably the scarcity of free gas that is responsible for the low amplitudes of the BSRs.
Resumo:
OKINAWA TROUGH; BASIN
Resumo:
A gene-clone-library-based molecular approach was used to study the nirS-encoding bacteria-environment relationship in the sediments of the eutrophic Jiaozhou Bay. Diverse nirS sequences were recovered and most of them were related to the marine cluster I group, ubiquitous in estuarine, coastal, and marine environments. Some NirS sequences were unique to the Jiaozhou Bay, such as the marine subcluster VIIg sequences. Most of the Jiaozhou Bay NirS sequences had their closest matches originally detected in estuarine and marine sediments, especially from the Chesapeake Bay, indicating similarity of the denitrifying bacterial communities in similar coastal environments in spite of geographical distance. Multivariate statistical analyses indicated that the spatial distribution of the nirS-encoding bacterial assemblages is highly correlated with environmental factors, such as sediment silt content, NH4+ concentration, and OrgC/OrgN. The nirS-encoding bacterial assemblages in the most hypernutrified stations could be easily distinguished from that of the least eutrophic station. For the first time, the sedimentological condition was found to influence the structure and distribution of the sediment denitrifying bacterial community.
Resumo:
The variolitic andesite from the Susong County in the Dabie Mountains implies that it was erupted in water. The mineralogy of the varioles is primarily radiate plagioclase (albite sind oligoclase), with little pyroxene, hornblende and quartz (derived from alteration). The pyroxene, hornblende and quartz are in the interstices between plagiocalse. The matrix consists of glass, hornblende, chlorite, epidote and zoisite. It is clearly subjected an extensive alteration. The andesite has an uncommon chemical composition. The SiO2 content is about 56.8%, TiO2 = 0.9%, MgO = 6.4%, Fe2O3 (tot) = 6.7%similar to 7.6%, 100Mg/(Mg + Fe) = 64.1 similar to 66.2. Mg-# is significantly high. The andesite has high abundances of large-lithophile trace elements (e.g. K, Ba. Sr, LREE), e.g. La/Nb = 5.56 similar to 6.07, low abundances of high-strength-field elements (HFSE e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subduction-related magmas. In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a character of the continental margins. There has a strong punishment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)(N) is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)(N) = 28.63 similar to 36.74, (La/Y)(N) = 70.33 similar to 82.4. The elements Y and Yb are depleted greatly, Y<20
Resumo:
Bottom-simulating reflectors (BSRs) were observed beneath the seafloor in the northern continental margin of the South China Sea (SCS). Acoustic impedance profile was derived by Constrained Sparse Spike Inversion (CSSI) method to provide information on rock properties and to estimate gas hydrate or free gas saturations in the sediments where BSRs are present. In general, gas hydrate-bearing sediments have positive impedance anomalies and free gas-bearing sediments have negative impedance anomalies. Based on well log data and Archie's equation, gas hydrate saturation can be estimated. But in regions where well log data is not available, a quantitative estimate of gas hydrate or free gas saturation is inferred by fitting the theoretical acoustic impedance to sediment impedance obtained by CSSI. Our study suggests that gas hydrate saturation in the Taixinan Basin is about 10 - 20% of the pore space, with the highest value of 50%, and free gas saturation below BSR is about 2 - 3% of the pore space, that can rise to 8 - 10% at a topographic high. The free gas is non-continuous and has low content in the southeastern slope of the Dongsha Islands. Moreover, BSR in the northern continental margin of the SCS is related to the presence of free gas. BSR is strong where free gas occurs.
Resumo:
Based on the latest seismic and geological data, tectonic subsidence of three seismic lines in the deepwater area of Pearl River Mouth Basin (PRMB), the northern South China Sea (SCS), is calculated. The result shows that the rifting process of study area is different from the typical passive continental margin basin. Although the seafloor spreading of SCS initiated at 32 Ma, the tectonic subsidence rate does not decrease but increases instead, and then decreases at about 23 Ma, which indicates that the rifting continued after the onset of seafloor spreading until about 23 Ma. The formation thickness exhibits the same phenomenon, that is the syn-rift stage prolonged and the post-rift thermal subsidence delayed. The formation mechanisms are supposed to be three: (1) the lithospheric rigidity of the northern SCS is weak and its ductility is relatively strong, which delayed the strain relaxation resulting from the seafloor spreading; (2) the differential layered independent extension of the lithosphere may be one reason for the delay of post-rift stage; and (3) the southward transition of SCS spreading ridge during 24 to 21 Ma and the corresponding acceleration of seafloor spreading rate then triggered the initiation of large-scale thermal subsidence in the study area at about 23 Ma.
Resumo:
南海北部陆缘深水区(水深>300m)蕴藏着丰富的资源,我国对深水区的地质研究刚刚起步,但相关领域已成为科研热点。深水油气盆地的构造演化是油气勘探中最重要的基础性研究之一,因此针对我国南海北部陆缘深水区开展构造演化及其资源效应的研究具有重要的理论意义和实际意义。 本文利用钻井和地震资料并结合区域地质资料,重点研究了珠江口盆地深水区的结构和构造演化,取得如下创新性成果:1)首次利用半地堑分析方法系统解剖了研究区的结构、各构造单元发育特征,在此基础上指出五个有利油气运聚带;2)采用回剥法并利用最新资料进行校正,得到了研究区更为可靠的构造沉降曲线,重新划分了裂陷期和裂后期的分界,认为32Ma南海海底扩张之后裂陷作用仍在持续,直到23Ma左右才开始大规模裂后热沉降,并进一步解释了裂陷期延迟的形成机制;3)应用非连续拉张模型计算拉张系数的方程计算了研究区的壳幔拉张系数,指出了深水区地幔相对于地壳的优势伸展作用;首次运用平衡剖面技术重建了研究区的构造发育史,计算了各构造期的拉张率和沉积速率,指出研究区新生代整体呈现持续拉张,拉张系数在1.1-1.24之间;4)精细刻画了水合物钻采区的地质构造特征,建立了该区天然气水合物成藏的概念模式;建立了一套根据地震叠加速度计算流体势的方法,为水合物成藏规律的研究提供了新的思路。
Resumo:
Firstly, established sequence stratigraphy of Sinian System-Middle Triassic Series framework in Sichuan basin,be divided into 21 second-level sequence stratigraphy and 105 third-level sequence stratigraphy.From many aspects,discussed sequence stratigraphy characteristic. On the foundation of structure unconformity and fission track analysis, on the ground of An county-Shuinin county regional seismic section, using the positive evolution equilibrium principle technology, comprehensivly be mapped structure evolution of Sichuan basin. It can be divided into seven stages, that is :Pre-Sinian basement stage, cratonic depression basin(Z1-S)stage, cratonic rifted basin(D-T2)stage, passive continental margin(T3x1-3)stage, foreland basin(T3x4-6)stage, depression basin (Jurassic Period-Miocene Epoch) stage, formed basin (Holocene Epoch) stage. Analysis on structure evolution history,burial history,source rocks thermal evolution history, Maoba changxing formation gas pool forming process can be classified into four stages: ancient lithological oil pool stages in Indosinian-early Yanshanian period(T-J1-2), ancient structure- lithological gas pool stages in middle Yanshanian period(J3-K1), structure- lithological gas pool setting stages in last Yanshanian period(K2), structure- lithological gas pool adjusting and transformation stages in Himalayan period(R-Q). Maoba feixianguan formation gas pool forming process can be classified into two stages: second structure gas pool stages in last Yanshanian period(K2),second structure gas pool physical adjusting and transformation stages in Himalayan period(R-Q),and summarize reservoir formation model. On the base of newest exploration achievement and petroleum geologic comprehensive research , demonstrate how structure controls hydrocarbon accumulation. Structure controlling source rocks behaves structure controlling main source rocks’sedimentary facies, medium-large pools mainly located at center or margin of hydrocarbon generation. Structure controlling palaeo-karst reservoirs ,reef and beach facies reservoirs, fault and fracture reservoirs. Structure controlling palaeo-uplift, and palaeo-uplift controlling hydrocarbon migration, active reservoirs’forming, palaeo-structure traps forming. Structure controls distribution of mudstone and gypsolith, controls preservation. Structure controls hydrocarbon conducting, structure traps forming and hydrocarbon accumulation. Whether or no, Structure controls total process of basin forming-source rocks’generation- hydrocarbon accumulation. It is direct effect results of structure movements that large traps’ conditions, conducting migration conditions, high quality preservation. source rocks’condition and reservoirs’ condition are the indirect effect results. In the last analysis, “source rock controlling theory”, “high quality reservoir mainly controlling theory”, “palaeo-uplift controlling theory” and “current structure deciding theory” are structure controlling hydrocarbon accumulation. There are high variability and complex mechanisms in Sichuan basin , but the regional hydrocarbon accumulation conditions are very well, such as abundant source rocks, matching process of hydrocarbon accumulation and many exploration areas. By means of integrated analysis, put forward hydrocarbon exploration direction and large-middle targets of China Petroleum and Chemical Corporation .Thus, more and more hydrocarbon proved reserve and output in Sichuan basin will be contributed to China energy industry in a long future time.
Resumo:
The Taklamakan Desert, lying in the center Tarim Basin of sourthern Xinjiang, is the largest sand sea in China and well known in the world as its inclemency. For understanding the formation and evolution of the Taklamakan Desert, it is very important to identify the provenance of aeolian sediments in the extensive dune fields, but the opinions from earlier studies are quite different. In this study, we examined the major- and trace-element compositions, mineral compositions and grain-size distributions of some Quaternary aeolian and nonaeolian sediments collected from the Taklamakan Desert, together with the variation of chemical and mineralogical compositions of different grain-size fraction. At the same time, we also studied the chemistries of some natural water samples (river water and groundwater) with the items of TDS, pH, Alkalinity, conductivity and major cation and anion compositions. Our results of analysis show some significant opinions as follow: Most of the frequency-distribution curves of grain size of dune sand samples are simgle peak, but that of the river and lacustrine sediment are most double peak or multi-peak. The grain-size distribution of dunefield sand changed gradually from north to south with the major wind direction in large scale, but there are many differences in regional scale. The major, REE, trace element compositions and mineral compositions are very different among the coarse, fine fraction and bulk samples due to the influence of grain-size. Most of the fine fractions are geochemically homogenous, but the coarse fractions and bulk samples are heterogenous. All the surface and ground waters are limnetic or sub-salty, their chemical compositions are mainly controlled by rock-weathering and crystallization- evaporation processes, and mainly come from the evaporate, while the contributions of the carbonate and silicate are little, excluding the influence on oasis water by carbonate. The mineral compositions of selected samples are stable, mainly composed of the strongly resistant mineral types. The mineral maturity of them are more immature at whole compared with other sandy sediments in the world, and they have experienced less degree of chemical weathering and recycling, being lying in the early stage of continental weathering. Among these sediments, the river sediments are relatively primitive. The sources of these sediments are maybe mainly terrigenous, silicic and subaluminous/ metalunious rocks, such as the granodiorite and its metamorphic rock. The geochemical compositions of dunefield sand are similar with those of the river sediments and dune sands near the river way; There are not only the resemblances but also the differences on geochemistry and granularity between north and south dunesands; The sediments from same section have different age but same trace-element compositions; The sediments from the south edge of Tarim Basin are all somewhat geochemically similar with the palaeo-river-sediment on the south edge of studying area. The REE data support the idea that the south dunesands are a little older than the north dunesands, and the tectonic settings of source area are mainly active continental margin based on the major-element compositions, so they indicate that the sediment of Taklamakan Desert maybe come mainly from the rock-weathering production of north part of the Kunlun Mountains. Compared with the sands of other dune field in north of China, the sands of the Taklamakan Desert are distinct by REE composition, but similar with the Luochuan loess, center China, and the two sandy dusts of Beijing, eastern China.
Resumo:
South China Sea is located in the convergence of Eurasian plate, the Pacific Ocean plate and Indian Ocean-Australia plate. The total area is about 3,500,000 km2, the geologic structure is complicated, and the structure line cut off reciprocal is the marginal sea taking form by that the seafloor spreads during the middle Oligocene. South China Sea continental margin have developed more than 10 large oil-gas bearing basins and a number of medium-small sized basins. These basins contain abundant mineral resources such as oil & gas. The marginal deepwater area in the north part of South China Sea has become our country’s strategic energy prospecting frontier. The deepwater area of Zhujiangkou and Qiongdongnan basins is the research target in this thesis. The thesis studied deep structure and the earth dynamics of the north part of South China Sea margin, and these researches provide scientific basis for oil-gas resources strategic investigation and valuation in deepwater sea area of north part slope of South China Sea. In order to develop the research of rebuilding velocities and density architecture of earth shell in region of interest, in marginal deepwater area in the north part of South China, we adopted 14 long-cable seismic reflection profile data of 3556.41 kilometers in total, the gravity measurement data along profiles (3851.44 kilometers in total), the magnetic observation along profiles (3838.4 kilometers in total) and depth measurement along profile, the logging data of 11 wells in project, the interpreted fault parameter and preexisting geologic and geophysical research achievement. This thesis has carried out concretely studying research as follows: 1. Overlay-velocity data sampling and analysis, interval velocity calculation, time-depth conversion, model building of earth shell velocity and layering character of earth shell are studied on 14 deep sections. Velocity structure in region of interest has revealed: Changchang is the sag with thinnest crust in Qiongdongnan basin; the sedimentary thickness lowers gradually from north to south, and the thickness change from west to east is milder. The sags’ sedimentary velocities in Qiongdongnan basin have obvious demarcation. The velocity of the 8000 meters sedimentary rocks is 4700 m/s in Shunde sag and Baiyun sag, and is the lowest; at that depth, the velocity very different in Liwan sag and Baiyun sag, which is about 800m/s. 2. Extracting gravity data and building of initial crust density model along the section; With Bouguer gravity anomaly data as constraint, revising density distributes of initial model, and building the crust density model. 3. With crust velocity and density as constraint, correcting the effect of thermobaric field and constructing constitution structure of rock in region of interest. By this research, we known that rocks in Zhujiangkou upper crustal layer are chiefly granite-gneiss, quartzite, granodiorite and basalt, however, rocks in Qiongdongnan basin upper earth shell are chiefly composed of granite-gneiss, quartzite, granodiorite, diorite and basalt. 4. Synthetically crust velocity and density structure, gaining expanding factor on crust and entire crust along section. The result is indicated: the expanding factor in every sag rises from northwest to southeast, which have reflected thinning characteristic of crust from continent to ocean. Intra-crustal deformation degree in Changchang and Ledong-Lingshui sag is bigger than that in Songnan-Baodao sag. Entire crust extension factor in Changchang and Songnan-Baodao sag is greater than that in Ledong-Lingshui sag, which can make an explanation of frequently event and longer heating process in middle-east of Qiongdongnan basin. 5. Synthesize multidisciplinary information to discuss the earth dynamics significance of discordogenic seismic profile in deepwater area of Zhujiangkou and Qiongdongnan basins.
Resumo:
As the first arrival of seismic phase in deep seismic sounding, Pg is the important data for studying the attributes of the sedimentary layers and the shape of crystalline basement because of its high intensity and reliable detection. Conventionally, the sedimentary cover is expressed as isotropic, linear increasing model in the interpretation of Pg event. Actually, the sedimentary medium should be anisotropic as preferred cracks or fractures and thin layers are common features in the upper crust, so the interpretation of Pg event needs to be taken account of seismic velocity anisotropy. Traveltime calculation is the base of data processing and interpretation. Here, we only study the type of elliptical anisotropy for the poor quality and insufficiency of DSS data. In this thesis, we first investigate the meaning of elliptical anisotropy in the study of crustal structure and attribute, then derive Pg event’s traveltime-offset relationship by assuming a linear increasing velocity model with elliptical anisotropy and present the invert scheme from Pg traveltime-offset dataset to seismic velocity and its anisotropy of shallow crustal structure. We compare the Pg traveltime calculated by our analytic formula with numerical calculating method to test the accuracy. To get the lateral variation of elliptical anisotropy along the profiling, a tomography inversion method with the derived formula is presented, where the profile is divided into rectangles. Anisotropic imaging of crustal structure and attribute is efficient method for crust study. The imaging result can help us interprete the seismic data and discover the attribute of the rock to analyze the interaction between layers. Traveltime calculation is the base of image. Base on the ray tracing equations, the paper present a realization of three dimension of layer model with arbitrary anisotropic type and an example of Pg traveltime calculation in arbitrary anisotropic type is presented. The traveltime calculation method is complex and it only adapts to nonlinear inversion. Perturbation method of travel-time calculation in anisotropy is the linearization approach. It establishes the direct relation between seismic parameters and travetime and it is fit for inversion in anisotropic structural imaging. The thesis presents a P-wave imaging method of layer media for TTI. Southeastern China is an important part of the tectonic framework concerning the continental margin of eastern China and is commonly assumed to comprise the Yangtze block and the Cathaysia block, the two major tectonic units in the region. It’s a typical geological and geophysical zone. In this part, we fit the traveltime of Pg phase by the raytracing numerical method. But the method is not suitable here because the inefficiency of numerical method and the method itself. By the analytic method, we fit the Pg and Sg and get the lateral variation of elliptical anisotropy and then discuss its implication. The northeastern margin of Qinghai-Tibetan plateau is typical because it is the joint area of Eurasian plate and Indian plate and many strong earthquakes have occurred there in recent years.We use the Pg data to get elliptical anisotropic variation and discuss the possible meaning.
Resumo:
During the Devonian, a complicated carbonate platform-basin configuration was created through transtensional rifting in the context of opening of Devonian South China Sea; extensive bedded chert, commonly interbedded with tuffaceous beds, occurred in the narrow, elongate interplatform basins (or troughs) in South China, where they occurred earlier (Early Devonian) in southern Guangxi and later (early Late Devonian) in northern Guangxi-south central Hunan. In order to unravel the origin and distribution of the bedded chert successions, and their relationships to basement faulting activities during the opening of the Devonian South China Sea, studies of element (major, minor and REE) geochemistry and Rb-Sr, Sm-Nd isotopic systematics are carried out upon the chert deposits. These chert deposits commonly have high SiO2 contents and (average 94.01%) and low TFe2O3 (average 0.55%), together with other geochemical parameters, suggestive of both biogenic and hydrothermal origins. However, Fe/Ti ratio are high along the elongate interplatform basins(troughs) to the northwest along Wuxiangling-Zhaisha-Chengbu, and to the southeast along Xiaodong-Mugui-Xinpu, suggesting relatively intense hydrothermal activities there. They generally contain very low total REE contents (∑REE average 31.21ug/g) with mediate negative Ce anomalies (mean Ce/Ce*=0.83) and low Lan/Cen values (average 1.64), indicating an overall continental margin basin where they precipitated. The northward increases in Ce/Ce* values, particularly along the elongate troughs bounded both to the east and west of the Guangxi-Huanan rift basin, suggest a northward enhancement of terrigenous influences, thereby reflecting a gradual northward propagation of open marine setting. Generally low positive Eu anomalies in the chert, except for the apparently high Eu anomalies in the chert from Chengbu (Eu/Eu* up to 4.6), suggest mild hydrothermal venting activities in general, except for those at Chengbu. The initial 87Sr/86Sr (0) ratios of chert generally vary from 0.712000 to 0.73000 , suggesting influences both from terrigenous influx and seawater. The Nd isotopic model ages (tDM or t2DM) and initial εNd (0) values of chert vary mostly from 1.5 to 2.1 Ga, and from –16 to –21, respectively, implying that the silica sources were derived from the provenances of the Palaeoproterozoic crust relics at depth. The high εNd (0) values of chert (-0.22 to 14.7) in some localities, mostly along the elongate troughs, suggest that silica sources may have been derived from deeper-seated mantle, being channeled through the interplate boundary fault zones extending downwards to the mantle. At Wuxiangling, Nanning, chert occurs extensively from the Emsian through the Frasnian strata, both U/Th ratios and tDM ages of chert reached up to a maximum in the early Frasnian corresponding to the extensive development of chert in South China, pointing to a maximum extensional stage of Devonian South China basin, which is supported by the Ce/Ce* values as is opposed to the previous datasets as the coeval minimum values.