8 resultados para Monopole
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energy-weighted sum rule m(-1) and the centroid energy of the ISGMR in Sn-120 and Pb-208 are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.
Resumo:
We propose a procedure to determine the effective nuclear shell-model Hamiltonian in a truncated space from a self-consistent mean-field model, e.g., the Skyrme model. The parameters of pairing plus quadrupole-quadrupole interaction with monopole force are obtained so that the potential energy surface of the Skyrme Hartree-Fock + BCS calculation is reproduced. We test our method for N = Z nuclei in the fpg- and sd-shell regions. It is shown that the calculated energy spectra with these parameters are in a good agreement with experimental data, in which the importance of the monopole interaction is discussed. This method may represent a practical way of defining the Hamiltonian for general shell-model calculations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this article we perform systematic calculations on low-lying states of 33 nuclei with A=202-212, using the nucleon pair approximation of the shell model. We use a phenomenological shell-model Hamiltonian that includes single-particle energies, monopole and quadrupole pairing interactions, and quadrupole-quadrupole interactions. The building blocks of our model space include one J=4 valence neutron pair, and one J=4,6,8 valence proton pair, in addition to the usual S and D pairs. We calculate binding energies, excitation energies, electric quadrupole and magnetic dipole moments of low-lying states, and E2 transition rates between low-lying states. Our calculated results are reasonably consistent with available experimental data. The calculated quadrupole moments and magnetic moments, many of which have not yet been measured for these nuclei, are useful for future experimental measurements.
Resumo:
Recent experimental data have revealed large mirror energy differences (MED) between high-spin states in the mirror nuclei Se-67 and As-67, the heaviest pair where MED have been determined so far. The MED are generally attributed to the isospin symmetry breaking caused by the Coulomb force and by the isospin-nonconserving part of the nucleon-nucleon residual interaction. The different contributions of the various terms have been extensively studied in the fp shell. By employing large-scale shell-model calculations, we show that the inclusion of the g(9/2) orbit causes interference between the electromagnetic spin-orbit and the Coulomb monopole radial terms at high spin. The large MED are attributed to the aligned proton pair excitations from the p(3/2) and f(5/2) orbits to the g(9/2) orbit. The relation of the MED to deformation is discussed.
Resumo:
Medium-spin states of Ge-70 have been studied via the Ni-60(C-12,2p gamma)Ge-70 reaction at 45 MeV. The ground-state band and the second 0(+) band have been extended to the 12(+) and 8(+) states, respectively. Two negative-parity bands, one of which has a coupled structure and the other has a decoupled structure, have been observed additionally. Although the latter decoupled structure was known up to the (21(-)) state from a previous experiment, the part of the level scheme up to the 15(-) state has been largely modified by the present experiment. Backbendings observed in the positive- and negative-parity yrast bands have been compared with those of the neighboring even Ge isotopes. The experimental level structure has been compared with the shell-model calculations in the model space (2p(3/2), 1f(5/2), 2(p1/2), 1g(9/2)) employing two kinds of effective interactions, one of which is an extended P + QQ interaction with monopole interactions and the other is developed from a renormalized G matrix. Microscopic structures of the observed bands have been discussed with the help of the shell-model calculations.
Resumo:
A 3-dimensional non-commutative oscillator with no mass term but with an appropriate momentum-dependent potential admits a conserved Runge-Lenz vector, derived from the dual description in momentum space. The trajectories lie on ellipses. The dynamical symmetry allows for an algebraic determination of the bound-state spectrum and extends to o(4,2). (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.