2 resultados para Monofilament Semmes-Weinstein

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several vibrational bands were observed near 3100 cm(-1) in GaN that had been implanted with hydrogen at room temperature and subsequently annealed, Our results indicate that these bands are due to nitrogen-dangling-bond defects created by the implantation that an decorated by hydrogen, The frequencies are close to those predicted recently for V-Ga-H-n complexes, leading us to tentatively assign the new lines to V-Ga defects decorated with different numbers of H atoms. (C) 1998 American Institute of Physics. [S0003-6951(98)03614-6].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyaniline (PANI), a member of the intrinsically conducting polymer (ICPs) family, was blended with polyamide-11 (polyco-aminoundecanoyle) in concentrated sulfuric acid. The above solution was used to spin conductive PANI/polyamide-11 fibers by wet-spinning technology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to study the two-phase morphology of the conductive PANI/polyamide-11 fibers. The micrographs of the cross-section, the axial section and the surface of the monofilament demonstrated that the two blend components were incompatible. The morphology of PANI in the fibers was of fibrillar form, which was valuable for producing conducting channels. The electrical conductivity of the fibers was from 10(-6) to 10(-1) S/cm with the different PANI fraction and the percolation threshold was about 5 wt.%. By comparing the two blend systems of PANI/Polyamide-11 fibers and carbon black filled poly(ethylene terephthalate) (PET) fibers, it was shown that the morphology of the conductive component had an influence on electrical conductivity, The former had higher conductivity and lower percolation threshold than the latter. (C) 2001 Elsevier Science B.V. All rights reserved.