156 resultados para Modeling.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Contimuum Mesomechanical Finite Element Modeling in Materials Development: A State-of-the-Art Review
Resumo:
Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description, damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.
Resumo:
Modeling study is performed to compare the flow and heat transfer characteristics of laminar and turbulent argon thermal-plasma jets impinging normally upon a flat plate in ambient air. The combined-diffusion-coefficient method and the turbulence-enhanced combined-diffusion-coefficient method are employed to treat the diffusion of argon in the argon-air mixture for the laminar and the turbulent cases, respectively. Modeling results presented include the flow, temperature and argon concentration fields, the air mass flow-rates entrained into the impinging plasma jets, and the distributions of the heat flux density on the plate surface. It is found that the formation of a radial wall jet on the plate surface appreciably enhances the mass flow rate of the ambient air entrained into the laminar or turbulent plasma impinging-jet. When the plate standoff distance is comparatively small, there exists a significant difference between the laminar and turbulent plasma impinging-jets in their flow fields due to the occurrence of a large closed recirculation vortex in the turbulent plasma impinging-jet, and no appreciable difference is found between the two types of jets in their maximum values and distributions of the heat flux density at the plate surface. At larger plate standoff distances, the effect of the plate on the jet flow fields only appears in the region near the plate, and the axial decaying-rates of the plasma temperature, axial velocity and argon mass fraction along the axis of the laminar plasma impinging-jet become appreciably less than their turbulent counterparts.
Resumo:
This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.
Resumo:
Both a real time optical interferometric experiment and a numerical simulation of two-dimension non-steady state model were employed to study the growth process of aqueous sodium chlorate crystals. The parameters such as solution concentration distribution, crystal dimensions, growth rate and velocity field were obtained by both experiment and numerical simulation. The influence of earth gravity during crystal growth process was analyzed. A reasonable theory model corresponding to the present experiment is advanced. The thickness of concentration boundary layer was investigated especially. The results from the experiment and numerical simulation match well.
Resumo:
Suction bucket foundations are widely used in the offshore platform for the exploitation of the offshore petroleum and natural gas resources. During winter seasons, ice sheets formed in Bohai Bay will impose strong impact and result in strong vibration on the platform. This paper describes a dynamic loading device developed on the geotechnical centrifuge and its application in modeling suction bucket foundation under the equivalent ice-induced vibration loadings. Some experimental results are presented. It is shown that when the loading amplitude is over a critical value, the sand at the upper part around the bucket softens or even liquefies. The excess pore pressure decreases from the upper part to the lower part of the sand foundation in vertical direction while decreases from near to far away from the bucket's side wall in the horizontal direction. Large settlements of the bucket and the sand around the bucket occur under the horizontal dynamic loading. The dynamic responses of the bucket with smaller size are heavier.
Resumo:
Silicon carbide bulk crystals were grown in an induction-heating furnace using the physical vapor transport method. Crystal growth modeling was performed to obtain the required inert gas pressure and temperatures for sufficiently large growth rates. The SiC crystals were expanded by designing a growth chamber having a positive temperature gradient along the growth interface. The obtained 6H-SiC crystals were cut into wafers and characterized by Raman scattering spectroscopy and X-ray diffraction, and the results showed that most parts of the crystals had good crystallographic structures.
Resumo:
In this paper, the possible error sources of the composite natural frequencies due to modeling the shape memory alloy (SMA) wire as an axial force or an elastic foundation and anisotropy are discussed. The great benefit of modeling the SMA wire as an axial force and an elastic foundation is that the complex constitutive relation of SMA can be avoided. But as the SMA wire and graphite-epoxy are rigidly bonded together, such constraint causes the re-distribution of the stress in the composite. This, together with anisotropy, which also reduces the structural stiffness can cause the relatively large error between the experimental data and theoretical results.
Resumo:
The effects of the unresolved subgrid-scale (SGS) motions on the energy balance of the resolved scales in large eddy simulation (LES) have been investigated actively because modeling the energy transfer between the resolved and unresolved scales is crucial to constructing accurate SGS models. But the subgrid scales not only modify the energy balance, they also contribute to temporal decorrelation of the resolved scales. The importance of this effect in applications including the predictability problem and the evaluation of sound radiation by turbulent flows motivates the present study of the effect of SGS modeling on turbulent time correlations. This paper compares the two-point, two-time Eulerian velocity correlation in isotropic homogeneous turbulence evaluated by direct numerical simulation (DNS) with the correlations evaluated by LES using a standard spectral eddy viscosity. It proves convenient to express the two-point correlations in terms of spatial Fourier decomposition of the velocity field. The LES fields are more coherent than the DNS fields: their time correlations decay more slowly at all resolved scales of motion and both their integral scales and microscales are larger than those of the DNS field. Filtering alone is not responsible for this effect: in the Fourier representation, the time correlations of the filtered DNS field are identical to those of the DNS field itself. The possibility of modeling the decorrelating effects of the unresolved scales of motion by including a random force in the model is briefly discussed. The results could have applications to the problem of computing sound sources in isotropic homogeneous turbulence by LES
Resumo:
Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.
Resumo:
In the framework of the two-continuum approach, using the matched asymptotic expansion method, the equations of a laminar boundary layer in mist flows with evaporating droplets were derived and solved. The similarity criteria controlling the mist flows were determined. For the flow along a curvilinear surface, the forms of the boundary layer equations differ from the regimes of presence and absence of the droplet inertia deposition. The numerical results were presented for the vapor-droplet boundary layer in the neighborhood of a stagnation point of a hot blunt body. It is demonstrated that, due to evaporation, a droplet-free region develops near the wall inside the boundary layer. On the upper edge of this region, the droplet radius tends to zero and the droplet number density becomes much higher than that in the free stream. The combined effect of the droplet evaporation and accumulation results in a significant enhancement of the heat transfer on the surface even for small mass concentration of the droplets in the free stream. 在双连续介质理论框架下,采用匹配渐进展开方法导出并求解了具有蒸发液滴的汽雾流中层流边界层方程,给出了控制汽雾流的相似判据。对于沿曲面的流动,边界层方程的形式取决于是否存在液滴的惯性沉积。给出了热钝体验点附近蒸汽。液滴边界层的数值计算结果。它们表明:由于蒸发,在边界层内近壁处形成了一个无液滴区域;在该区上边界处,液滴半径趋于零而液滴数密度急剧增高。液滴蒸发及聚集的联合效应造成了表面热流的显著增加,甚至在自由来流中液滴质量浓度很低时此效应依然存在。
Resumo:
Molecular dynamics simulations on diffusion bonding of Cu-Ag showed that the thickness of the interfacial region depended on the stress. The interfacial region became amorphous during diffusion bonding, and it would normally transform from amorphous into crystalline structure when the structure was cooled to the room temperature.
Resumo:
Modeling study is performed to reveal the special features of the entrainment of ambient air into subsonic laminar and turbulent argon plasma jets. Two different types of jet flows are considered, i.e., the argon plasma jet is impinging normally upon a flat substrate located in atmospheric air surroundings or is freely issuing into the ambient air. It is found that the existence of the substrate not only changes the plasma temperature, velocity and species concentration distributions in the near-substrate region, but also significantly enhances the mass flow rate of the ambient air entrained into the jet due to the additional contribution to the gas entrainment of the wall jet formed along the substrate surface. The fraction of the additional entrainment of the wall jet in the total entrained-air flow rate is especially high for the laminar impinging plasma jet and for the case with shorter substrate standoff distances. Similarly to the case of cold-gas free jets, the maximum mass flow-rate of ambient gas entrained into the turbulent impinging or free plasma jet is approximately directly proportional to the mass flow rate at the jet inlet. The maximum mass flow-rate of ambient gas entrained into the laminar impinging plasma jet slightly increases with increasing jet-inlet velocity but decreases with increasing jet-inlet temperature.
Resumo:
Three analytical double-parameter criteria based on a bending model and a two-dimensional finite element analysis model are presented for the modeling of ductile thin film undergoing a nonlinear peeling process. The bending model is based on different governing parameters: (1) the interfacial fracture toughness and the separation strength, (2) the interfacial fracture toughness and the crack tip slope angle, and (3) the interfacial fracture toughness and the critical Mises effective strain of the delaminated thin film at the crack tip. Thin film nonlinear peeling under steady-state condition is solved with the different governing parameters. In addition, the peeling test problem is simulated by using the elastic-plastic finite element analysis model. A critical assessment of the three analytical bending models is made by comparison of the bending model solutions with the finite element analysis model solutions. Furthermore, through analyses and comparisons for solutions based on both the bending model and the finite element analysis model, some connections between the bending model and the finite element analysis model are developed. Moreover, in the present research, the effect of different selections for cohesive zone shape on the ductile film peeling solutions is discussed.
Resumo:
Bulk single crystals of GaN and AlN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or nitride is used to attack a bulk nitride feedstock at temperatures from 200°C to 500°C and pressures from 1 to 4 kbar. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the fluid flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of particle size on flow pattern and temperature distribution in an autoclave are analyzed.