7 resultados para Mobile Computing
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
新的计算模式,普适计算和全局计算,正在作为高度分布式和移动计算的计算模式展现出来。这篇论文探讨了在抽象层面上支持这些新型计算模式的适合的形式化基础,关注在进程移动单位上的控制, 以便在分布式与移动计算环境下更好地协调进程的移动性。 论文的第一部分概述了针对分布式、移动计算的现有进程演算模型中的进程移动单元,并且设计了一种在此方面更优、更具弹性的进程框架。为了表示这种进程框架,我们提出了一种新的、针对移动和分布式系统的进程演算,这种进程演算的优点是动态、弹性的控制进程的移动单元;具体的思路就是扩展π- calculus以及其支持分布式和移动性的变体。我们把这种新的演算叫做Modular π-calculus。我们通过这种演算的提出来说明进程框架提供了一种针对移动进程更为合适的协调机制以及编程模型,例如移动的代理和动态组件载入的支持。之后,我们通过讨论互模拟的几种提法来具体说明能够反映演算设计的进程描述的关键,之后我们讨论了它们的具体性质。 本文的第二部分提出了一个对进程模型的行为和性质进行推理的规约框架。首先,提出了一个对Modularπ-calculus中进程的系统性质进行规约的模态逻辑。为了更好的理解该逻辑,文中对由这个逻辑推出的进程等价的特征进行了研究,并且证明了该逻辑的区分能力介于互模拟和结构一致之间。接下来关于这个规约框架的自动化,本文针对该逻辑和Modular π-calculus的有限控制子集,提出了模型检测算法,并且给出了算法正确性的证明。同时文中贯穿了一些实际且直观的例子,以展现本文提出的一组框架即演算、逻辑和模型算法的有效性。
Resumo:
In this paper, a low-complexity soft-output QRD-M detection algorithm is proposed for high-throughput Multiple-input multiple-output (MIMO) systems. By employing novel expansion on demand and distributed sorting scheme, the proposed algorithm can reduce 70% and 85% foundational operations for 16-QAM and 64-QAM respectively compared to the conventional QRD-M algorithm. Furthermore, the proposed algorithm can yield soft information to improve the bit error rate (BER) performance. Simulation results show that the proposed algorithm can achieve a near-NIL detection performance with less foundational operations
Resumo:
National Natural Science Foundation of China; Dalian University of Technology
Resumo:
为满足移动环境对非结构化个人信息管理的自然性和高效性的需求,提出一个基于移动设备的个人信息管理系统Ruby.首先分析了移动环境对个人信息管理的需求,描述了系统框架,接着介绍了系统界面和交互过程,并阐述了支持该系统的2个主要技术:非结构化笔记编辑技术和基于笔迹标签的检索技术.对2个技术和整个系统的评估结果表明,该系统能够满足移动环境对自然交互、非结构化信息采集加工及个人信息自然检索的需求.
Resumo:
The LURR theory is a new approach for earthquake prediction, which achieves good results in earthquake prediction within the China mainland and regions in America, Japan and Australia. However, the expansion of the prediction region leads to the refinement of its longitude and latitude, and the increase of the time period. This requires increasingly more computations, and the volume of data reaches the order of GB, which will be very difficult for a single CPU. In this paper, a new method was introduced to solve this problem. Adopting the technology of domain decomposition and parallelizing using MPI, we developed a new parallel tempo-spatial scanning program.