5 resultados para Minimum Variance Model

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characteristics of supersonic combustion by injecting kerosene vapor into a Mach 2.5 crossflow at various preheat temperatures and pressures were investigated experimentally. A two-stage heating system has been designed and tested, which can prepare heated kerosene of 0.8 kg up to 820 K at pressure of 5.5 Mpa with minimum/negligible fuel coking. In order to simulate the thermophysical properties of kerosene over a wide range of thermodynamic conditions, a three-component surrogate that matches the compound class of the parent fuel was employed. The flow rate of kerosene vapor was calibrated using a sonic nozzle. Computed flow rates using the surrogate fuel are in agreement with the experimental data. Kerosene jets at various preheat temperatures injecting into both quiescent environment and Mach 2.5 crossflow were visualized. It was found that at injection pressure of 4 Mpa and preheat temperature of 550 K the kerosene jet was completely in vapor phase, while keeping almost the same penetration depth as compared to the liquid kerosene injection. Supersonic combustion tests were also carried out to compare the combustor performance for the cases of vaporized kerosene injection, liquid kerosene injection, and effervescent atomization with hydrogen barbotage, under the similar stagnation conditions. Experimental results demonstrated that the use of vaporized kerosene injection leads to better combustor performance. Further parametric study on vaporized kerosene injection in a supersonic model combustor is needed to assess the combustion efficiency as well as to identify the controlling mechanism for the overall combustion enhancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a self-consistent-field lattice model for block copolymers and propose a novel and general method to solve the self-consistent-field equations. The approach involves describing the polymer chains in a lattice and employing a two-stage relaxation procedure to evolve a system as rapidly as possible to a free-energy minimum. In order to test the validity of this approach, we use the method to study the microphases of rod-coil diblock copolymers. In addition to the lamellar and cylindrical morphologies, micellar, perforated lamellar, gyroid, and zigzag structures have been identified without any prior assumption of the microphase symmetry. Furthermore, this approach can also give the possible orientation of the rods in different structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than 22 000 folding kinetic simulations were performed to study the temperature dependence of the distribution of first passage time (FPT) for the folding of an all-atom Go-like model of the second beta-hairpin fragment of protein G. We find that the mean FPT (MFPT) for folding has a U (or V)-shaped dependence on the temperature with a minimum at a characteristic optimal folding temperature T-opt*. The optimal folding temperature T-opt* is located between the thermodynamic folding transition temperature and the solidification temperature based on the Lindemann criterion for the solid. Both the T-opt* and the MFPT decrease when the energy bias gap against nonnative contacts increases. The high-order moments are nearly constant when the temperature is higher than T-opt* and start to diverge when the temperature is lower than T-opt*. The distribution of FPT is close to a log-normal-like distribution at T* greater than or equal to T-opt*. At even lower temperatures, the distribution starts to develop long power-law-like tails, indicating the non-self-averaging intermittent behavior of the folding dynamics. It is demonstrated that the distribution of FPT can also be calculated reliably from the derivative of the fraction not folded (or fraction folded), a measurable quantity by routine ensemble-averaged experimental techniques at dilute protein concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layer’s TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHA’s structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHA’s structure parameters and deflection rate, especially the key factors’ effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar ultraviolet (UV) radiation at wavelengths less than 400 nm is an important source of energy for aeronomic processes throughout the solar system. Solar UV photons are absorbed in planetary atmospheres, as well as throughout the heliosphere, via photodissociation of molecules, photoionization of molecules and atoms, and photoexcitation toexcitation including resonance scattering. In this paper, the solar irradiances data measured by TIMED SEE, as well as the solar proxies such as F10.7 and Mg II, thermosphere neutral density of CHAMP measurements and topside ionospheric plasmas densities from DMSP, are used to analyze solar irradiance effects on the variabilities of the thermosphere and the ionosphere. First, thermosphere densities near 410 km altitude are analyzed for solar irradiance variability effects during the period 2002-2004. Correlations between the densities and the solar irradiances for different spectral lines and wavelength ranges reveal significantly different characteristics. The density correlates remarkably well with all the selected solar irradiances except the lower chromospheric O I (130.4 nm) emission. Among the chosen solar proxies, the Mg II core-to-wing ratio index, EUV (30-120 nm) and F10.7 show the highest correlations with the density for short-term (< ~27 days) variations. For both long- (> ~27 days) and short-term variations, linear correlation coefficients exhibit a decreasing trend from low latitudes towards high latitudes. The density variability can be effectively modeled (capturing 71% of the variance) using multiple solar irradiance indices, including F10.7, SEUV (the EUV 30-120 nm index), and SFUV (the FUV 120-193 nm index), in which a lag time of 1 day was used for both F10.7 and SEUV, and 5 days for SFUV. In our regression formulation SEUV has the largest contribution to the density variation (40%), with the F10.7 having the next largest contribution (32%) and SFUV accounting for the rest (28%). Furthermore, a pronounced period of about 27.2 days (mean period of the Sun's rotation) is present in both density and solar irradiance data of 2003 and 2004, and a pronounced period of about 54.4 days (doubled period of the solar rotation) is also revealed in 2004. However, soft X-ray and FUV irradiances did not present a pronounced 54.4 day period in 2004, in spite of their high correlation with the densities. The Ap index also shows 54-day periodicities in 2004, and magnetic activity, together with solar irradiance, affects the 54-day variation in density significantly. In addition, NRLMSISE00, DTM-2000 and JB2006 model predictions are compared with density measurements from CHAMP to assess their accuracy, and the results show that these models underestimate the response of the thermosphere to variations induced by solar rotation. Next, the equatorial topside ionospheric plasmas densities Ni are analyzed for solar irradiance variability effects during the period 2002-2005. Linear correlations between Ni and the solar irradiances for different wavelength ranges reveal significantly different characteristics. XUV (0-35 nm) and EUV (115-130 nm) show higher correlation with Ni for the long-term variations, whereas EUV (35-115 nm) show higher correlation for the short-term variations. Moreover, partial correlation analysis shows that the long-term variations of Ni are affected by both XUV (0-35 nm) and EUV (35-115 nm), whereas XUV (0-35 nm) play a more important role; the short-term variations of Ni are mostly affected by EUV (35-115 nm). Furthermore, a pronounced period of about 27 days is present in both Ni and solar irradiance data of 2003 and 2004, and a pronounced period of about 54 days is also revealed in 2004. Finally, prompted by previous studies that have suggested solar EUV radiation as a means of driving the semiannual variation, we investigate the intra-annual variation in thermosphere neutral density near 400 km during 2002-2005. The intra-annual variation, commonly referred to as the ‘semiannual variation’, is characterized by significant latitude structure, hemispheric asymmetries, and inter-annual variability. The magnitude of the maximum yearly difference, from the yearly minimum to the yearly maximum, varies by as much as 60% from year to year, and the phases of the minima and maxima also change by 20-40 days from year to year. Each annual harmonic of the intra-annual variation, namely, annual, semiannual, ter-annual and quatra-annual, exhibits a decreasing trend from 2002 through 2005 that is correlated with the decline in solar activity. In addition, some variations in these harmonics are correlated with geomagnetic activity, as represented by the daily mean value of Kp. Recent empirical models of the thermosphere are found to be deficient in capturing most of the latitude dependencies discovered in our data. In addition, the solar flux and geomagnetic activity proxies that we have employed do not capture some latitude and inter-annual variations detected in our data. It is possible that these variations are partly due to other effects, such as seasonal-latitudinal variations in turbopause altitude (and hence O/N2 composition) and ionosphere coupling processes that remain to be discovered in the context of influencing the intra-annual variations depicted here. Our results provide a new dataset to challenge and validate thermosphere-ionosphere general circulation models that seek to delineate the thermosphere intra-annual variation and to understand the various competing mechanisms that may contribute to its existence and variability. We furthermore suggest that the term “intra-annual” variation be adopted to describe the variability in thermosphere and ionosphere parameters that is well-captured through a superposition of annual, semiannual, ter-annual, and quatra-annual harmonic terms, and that “semiannual’ be used strictly in reference to a pure 6-monthly sinusoidal variation. Moreover, we propose the term “intra-seasonal” to refer to those shorter-term variations that arise as residuals from the above Fourier representation.