171 resultados para Migration, Internal -- Sweden -- Stockholm

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inferring how the Pleistocene climate oscillations have repopulated the extant population structure of Chondrus crispus Stackh. in the North Atlantic Ocean is important both for our understanding of the glacial episode promoting diversification and for the conservation and development of marine organisms. C. crispus is an ecologically and commercially important red seaweed with broad distributions in the North Atlantic. Here, we employed both partial mtDNA Cox1 and nrDNA internal transcribed spacer region 2 (ITS2) sequences to explore the genetic structure of 17 C. crispus populations from this area. Twenty-eight and 30 haplotypes were inferred from these two markers, respectively. Analysis of molecular variance (AMOVA) and of the population statistic Theta(ST) not only revealed significant genetic structure within C. crispus populations but also detected significant levels of genetic subdivision among and within populations in the North Atlantic. On the basis of high haplotype diversity and the presence of endemic haplotypes, we postulate that C. crispus had survived in Pleistocene glacial refugia in the northeast Atlantic, such as the English Channel and the northwestern Iberian Peninsula. We also hypothesize that C. crispus from the English Channel refugium repopulated most of northeastern Europe and recolonized northeastern North America in the Late Pleistocene. The observed phylogeographic pattern of C. crispus populations is in agreement with a scenario in which severe Quaternary glaciations influenced the genetic structure of North Atlantic marine organisms with contiguous population expansion and locally restricted gene flow coupled with a transatlantic dispersal in the Late Pleistocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were performed, in a terrestrial environment, to study the migration and interaction of two drops with different diameters in matrix liquid under temperature gradient field. Pure soybean oil and silicon oil were used as matrix liquid and the drop liquid, respectively. The information on the motions of two drops was recorded by CCD camera system in the experiments to analyze the trajectories and velocities of the drops. Our experiments showed that, upon two drops approaching each other, the influence of the larger drop on the motion of the smaller one became significant. Meanwhile the smaller drop had a little influence on the larger one all the time. The oscillation of migration velocities of both drops was observed as they were approaching. For a short period the smaller drop even moved backward when it became side by side with the larger one during the migration. Although our experimental results on the behavior of two drops are basically consistent with the theoretical predictions, there are also apparent differences. 2006 Elsevier Ltd. All rights reserved. Keywords: Thermocapillary migration; Drop; Interaction; Oscillation 1. Introduction A bubble or drop will move when placed in another fluid with temperature gradient. This motion happens as a consequence of the variation of interfacial tension with temperature. Such a phenomenon is already known as Marangoni migration problem. With the development of microgravity science, bubble dynamics and droplet dynamics became a hot point problem of research because this investigation is very important for basic research as well as for applications in reduced gravity environment, such as space material science, chemical engineering and so on. Young et al. first investigated the thermocapillary migration of

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental hardware has been developed to perform experiments on the Marangoni migration of drops in the case of intermediate Reynolds numbers in a microgravity environment. The experiments were conducted using the drop shaft free fall facility with a 4.5 second microgravity period in the Microgravity Laboratory of Japan. In this experiment, the thermocapillary velocity of drop migration was measured for drops of different sizes in a series of temperature gradients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to monitor multiple protein reaction processes simultaneously, a biosensor based on imaging ellipsometry operated in the total internal reflection mode is proposed. It could be realised as an automatic analysis for protein interaction processes with real-time label-free method. Its principle and methodology as well as a demonstration for its applications are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the internal variable theory, a viscoelastic constitutive model of a highly deformable continuous medium is proposed. A set of second rank tensorial internal state variables corresponding to Biot's strain is introduced, and a nonlinear evolution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experiments of drop Marangoni migration have been performed by the drop shift facility of short period of 4.5 s, and the drop accelerates gradually to an asymptotic velocity during the free fall. The unsteady and axisymmetric model is developed to study the drop migration for the case of moderate Reynolds number Re = O(1), and the results are compared with the experimental ones in the present paper. Both numerical and experimental results show that the migration velocity for moderate Reynolds number is several times smaller than that given by the linear YGB theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical investigation is performed on the thermocapillary motion of two bubbles in arbitrary configuration in microgravity environment under the assumption that the surface tension is high enough to keep the bubbles spherical. The two bubbles are dr

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The internal stresses in a duplex coating involving a prequenched layer are believed to change if it is exposed to thermal loading. To characterise the internal stresses in such a duplex coating, a gradient model of finite element method is set up. The initial stress within the substrate developed in as quenching and the internal stresses due to the tempering of the prequenched layer ( TPQL) in such a duplex coating are calculated. The synthetical internal stresses in coating can be estimated by superposing uniform initial stresses developed during plating. The results indicate that the residual tensile stresses due to fabrication in coating will be decreased greatly, or even synthetical compressive internal stresses may arise in the coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal friction of nanocrystalline nickel is investigated by mechanical spectroscopy from 360 K to 120 K. Two relaxation peaks are found when nanocrystalline nickel is bent up to 10% strain at room temperature and fast cooling. However, these two peaks disappear when the sample is annealed at room temperature in vacuum for ten days. The occurrence and disappearance of the two relaxation peaks can be explained by the interactions of partial dislocations and point defects in nanocrystalline materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The horizontal migration of proppant was numerically investigated with a two-fluid model, in which the interaction between fracturing fluid and proppant, along with that among proppants was taken into account through interphase forces. The migration process and the volumetric concentration of the proppant were examined under various conditions, and the. averaged volumetric concentration of the proppant was obtained. The present research might be useful in the process design of the hydraulic fracturing in the oilfields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An on-board space experiment of bubble thermocapillary migration was performed in the Chinese 22nd recoverable satellite in 2005. Silicone oil of nominal viscosity 5cSt was used as the continuous phase in the experiment. Air bubbles were injected into the liquid in the same direction as the constant temperature gradient in the liquid. The velocities of bubbles were obtained by recording the paths of the bubbles. The results indicate that the scaled velocity of bubbles decreases with an increase of the Marangoni number extended to 9288, which agrees with the results of previous space experiments and numerical simulation. In addition, the interaction between two bubbles was also observed in the space experiment. The trajectories and the velocities of the bubbles were obtained. The two-bubble experiment results are also consistent with the theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a numerical study on the thermocapillary migration of drops. The Navier-Stokes equations coupled with the energy conservation equation are solved by the finite-difference front-tracking scheme. The axisymmetric model is adopted in Our simulations, and the drops are assumed to be perfectly spherical and nondeformable. The benchmark simulation starts from the classical initial condition with a uniform temperature gradient. The detailed discussions and physical explanations of migration phenomena are presented for the different values of (1) the Marangoni numbers and Reynolds numbers of continuous phases and drops and (2) the ratios of drop densities and specific heats to those of continuous phases. It is found that fairly large Marangoni numbers may lead to fluctuations in drop velocities at the beginning part of simulations. Finally, we also discuss the influence of initial conditions on the thermocapillary migrations. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from a space experiment on bubble thermocapillary migration conducted on board the Chinese 22nd recoverable satellite were presented. Considering the temperature field in the cell was disturbed by the accumulated bubbles, the temperature gradient was corrected firstly with the help of the temperature measurement data at six points and numerical simulation. Marangoni number (Ma) of single bubble migrating in the space experiment ranged from 98.04 to 9288, exceeding that in the previous experiment data. The experiment data including the track and the velocity of two bubble thermocapillary migration showed that a smaller bubble would move slower as it was passed by a larger one, and the smaller one would even rest in a short time when the size ratio was large enough.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing models of baroclinic tides are based upon the "traditional approximation'', i. e., neglect of the horizontal component of the Earth's rotation, leading to a well- known conclusion that no freely propagating internal waves can exist beyond the critical latitude and the wave rays are symmetric to the vertical. However, recent studies have contended that the situation may change if both the vertical and horizontal components of the Earth's rotation are taken into account. With the full account of the Coriolis force, characteristics of the internal wavefield generated by tidal flow over uneven topography are investigated. It is found that "nontraditional effects'' profoundly change not only the dynamics of internal waves but also the rate at which the barotropic tidal energy is fed into the internal wavefield. Discarding the traditional approximation, internal waves are proved to be able to generate poleward of the critical latitude, rays of which are no longer symmetric and the limiting values of ray angles become greater or less than 90 degrees, depending on the local latitude and the direction of ray. More importantly, in contrast to the predictions of models based upon the traditional approximation, a substantial conversion occurs in the situations when stratification is so weak that the buoyancy frequency is below the tidal one.