28 resultados para Midcontinent Rift
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Based on the latest seismic and geological data, tectonic subsidence of three seismic lines in the deepwater area of Pearl River Mouth Basin (PRMB), the northern South China Sea (SCS), is calculated. The result shows that the rifting process of study area is different from the typical passive continental margin basin. Although the seafloor spreading of SCS initiated at 32 Ma, the tectonic subsidence rate does not decrease but increases instead, and then decreases at about 23 Ma, which indicates that the rifting continued after the onset of seafloor spreading until about 23 Ma. The formation thickness exhibits the same phenomenon, that is the syn-rift stage prolonged and the post-rift thermal subsidence delayed. The formation mechanisms are supposed to be three: (1) the lithospheric rigidity of the northern SCS is weak and its ductility is relatively strong, which delayed the strain relaxation resulting from the seafloor spreading; (2) the differential layered independent extension of the lithosphere may be one reason for the delay of post-rift stage; and (3) the southward transition of SCS spreading ridge during 24 to 21 Ma and the corresponding acceleration of seafloor spreading rate then triggered the initiation of large-scale thermal subsidence in the study area at about 23 Ma.
Resumo:
OKINAWA TROUGH; BASIN
Resumo:
We explore the tectono-magmatic processes in the western West Philippine Basin, Philippine Sea Plate, using bathymetric data acquired in 2003 and 2004. The northwestern part of the basin formed through a series of northwestward propagating rifts. We identify at least five sequences of propagating rifts, probably triggered by mantle flow away from the mantle thermal anomaly that is responsible for the origin of the Benham and Urdenata plateaus. Gravitational forces caused by along-axis topographic gradient and a similar to 30 degrees ridge reorientation appear to also be driving the rift propagations. The along-axis mantle flow appears to be reduced and deflected along the Luzon-Okinawa fracture zone, because the spreading system remained stable west of this major fault zone. North-east of the Benham plateau, a left-lateral fracture zone has turned into a NE-SW-trending spreading axis. As a result, a microplate developed at the triple junction.
Resumo:
Quantitative studies on the evolution and dynamics of the deepwater area of Pearl River Mouth basin (PRMB) were carried out based on the latest geological and seismic data. The study area is generally in an extensional state during the Cenozoic. The major extension happened in the earlier syn-rift stages before 23 Ma and the extension after 23 Ma is negligible. Two rapid subsidence periods, 32-23 Ma and 5.3-2.6 Ma, are identified, which are related to the abrupt heat decay during margin breakup and the collision between the Philippine Sea plate and the Eurasian plate, respectively. The strongest crustal thinning in the Baiyun (sic) sag may trigger the syn-rift volcanism along the weak faulted belt around the sag. The Cenozoic tectonic evolution of the study area could be divided into five stages: rifting (similar to 50-40 Ma), rift-drift transition (similar to 40-32 Ma), early post-breakup (similar to 32-23 Ma), thermal subsidence (similar to 23-5.3 Ma) and neotectonic movement (similar to 5.3-0 Ma).
Resumo:
We report new geophysical and petrological data collected at the southern tip of the Parece Vela Basin in the Philippine Sea. The Parece Vela Basin, which was formed as a backarc basin behind proto Mariana arc-trench system from late Oligocene to middle Miocene, provides us a good opportunity to study the nature of successive backarc basin formations in the Philippine Sea and the relationship between are and backarc magmatisms. Regional bathymetric map derived from satellite altimetry shows that the southern tip of the basin, now located just west of the Yap arc-trench system, has unique morphological and tectonic features which include: 1) the absence of spreading center or its trace, 2) shallow average depth, and 3) enigmatic curved structures. Our newly collected high-resolution bathymetric data reveal that the spreading fabric similar to the central Parece Vela Basin exists to the north of 9 degrees 20'N. Thus it appears that the present-day Yap arc and backarc region represent the western half of the seafloor that was produced by the early E-W and the following NE-SW spreading in the northern and central Parece Vela Basin, and that the eastern counterpart now lies west of the West Mariana Ridge. Unlike the northern Parece Vela Basin, there appears to be no evidence for a systematic propagation of spreading center in the southern part. Instead two rift segments, one which extends from the central Parece Vela Basin and the other which lies within the western remnant arc (Kyushu-Palau Ridge), overlap at the southern tip of the basin, producing a complex seafloor that includes curvilinear deeps and deformed topographic highs. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Based on high-resolution 3D seismic data, we document the polygonal faults within the Miocene Meishan (sic) Formation and Huangliu (sic) Formation of the Qiongdongnan (sic) basin, northern South China Sea. Within the seismic section and time coherent slice, densely distributed extensional faults with small throw and polygonal shape were identified in map view. The orientation of the polygonal faults is almost isotropic, indicating a non-tectonic origin. The deformation is clearly layer-bounded, with horizontal extension of 11.2% to 16%, and 13.2% on average. The distribution of polygonal faults shows a negative correlation with that of gas chimneys. The development of polygonal faults may be triggered by over-pressure pore fluid which is restricted in the fine-grained sediments of bathyal facies when the sediments is compacted by the burden above. The polygonal faults developed to balance the volumetric contraction and restricted extension. The product of hydrocarbon in the Meishan Formation may have contributed to the development of the polygonal faults. In the study area, it was thought that the petroleum system of the Neogene post-rift sequence is disadvantageous because of poor migration pathway. However, the discovery of polygonal faults in the Miocene strata, which may play an important role on the fluid migration, may change this view. A new model of the petroleum system for the study area is proposed.
Resumo:
Zenisu deep-sea channel originated from a volcanic arc region, Izu-Ogasawara Island Arc, and vanished in the Shikoku Basin of the Philippine Sea. According to the swath bathymetry, the deep-sea channel can be divided into three,segments. They are Zenisu canyon, E-W fan channel and trough-axis channel. A lot of volcanic detritus were deposited in the Zenisu Trough via the deep-sea channel because it originated from volcanic arc settings. On the basis of the swath bathymetry, submersible and seismic reflection data, the deposits are characterized by turbidite and debrite deposits as those in the other major deep-sea channels. Erosion or few sediments were observed in the Zenisu canyon, whereas a lot of turbidites and debrites occurred in the E-W channel and trough axis channel. Cold seep communities, active fault and fluid flow were discovered along the lower slope of the Zenisu Ridge. Vertical sedimentary sequences in the Zenisu Trough consist of the four post-rift sequence units of the Shikoku Basin, among which Units A and B are two turbidite units. The development of Zenisu canyon is controlled by the N-S shear fault, the E-W fan channel is related to the E-W shear fault, and the trough-axis channel is related to the subsidence of central basin.
Resumo:
南海北部陆缘深水区(水深>300m)蕴藏着丰富的资源,我国对深水区的地质研究刚刚起步,但相关领域已成为科研热点。深水油气盆地的构造演化是油气勘探中最重要的基础性研究之一,因此针对我国南海北部陆缘深水区开展构造演化及其资源效应的研究具有重要的理论意义和实际意义。 本文利用钻井和地震资料并结合区域地质资料,重点研究了珠江口盆地深水区的结构和构造演化,取得如下创新性成果:1)首次利用半地堑分析方法系统解剖了研究区的结构、各构造单元发育特征,在此基础上指出五个有利油气运聚带;2)采用回剥法并利用最新资料进行校正,得到了研究区更为可靠的构造沉降曲线,重新划分了裂陷期和裂后期的分界,认为32Ma南海海底扩张之后裂陷作用仍在持续,直到23Ma左右才开始大规模裂后热沉降,并进一步解释了裂陷期延迟的形成机制;3)应用非连续拉张模型计算拉张系数的方程计算了研究区的壳幔拉张系数,指出了深水区地幔相对于地壳的优势伸展作用;首次运用平衡剖面技术重建了研究区的构造发育史,计算了各构造期的拉张率和沉积速率,指出研究区新生代整体呈现持续拉张,拉张系数在1.1-1.24之间;4)精细刻画了水合物钻采区的地质构造特征,建立了该区天然气水合物成藏的概念模式;建立了一套根据地震叠加速度计算流体势的方法,为水合物成藏规律的研究提供了新的思路。
Resumo:
Changling fault depression is the biggest fault subsidence in south of Songliao Basin. In its Lower Cretaceous Yingcheng and Shahezi formations developed thick source rocks of deep lake facies and developed poly-phase volcanic rock reservoirs as well. In recent years, significant breakthroughs have been obtained in hydrocarbon exploration of volcanic rock reservoir in the different fault depressions in Songliao basin. Lately, I have been involved in hydrocarbon exploration in the Changling rift depression, especially volcanic rock reservoirs and exploration targets research, participating in the deployment of well Yaoshen 1 which gained over 40 × 104m3 natural gas flow. As quick changes of lithology and facies in Changling area in the south of Songliao basin, and the volcanic rock interludes distribution in continental clastic rock and shale in 3D space, so the identification of volcanic rock types and distribution become a difficult problem. Thus, based on the integrated research of the wild outcrop observation, gravity, magnetic and seismic data, geophysical logging, drilling and coring, laboratory test, this paper carried out the reservoir identification, description and prediction of volcanic rocks in Changling fault depression. In this area, this paper analyzed the volcanic rocks litho-facies, the eruption period, and characteristics of cycles. At the same time, tried to know how to use logging, seismic data to separate volcanic rocks from sandstone and shale, distinguish between volcanic reservoir and non-reservoir, distinguish between intermediate-basic and acidic volcanic rocks, and how to identify traps of volcanic rocks and its gas-bearing properties, etc. Also it is summarized forming conditions and distribution of traps, and possible gas-bearing traps were optimized queuing management. Conclusions as follows: There are two faulted basements in Changling fault depression, granite basement in the southeast and upper paleozoic epimetamorphic basement in the northwest. The main volcanic reservoirs developed in Yingcheng period, which was the intermediate-basic and acidic volcanic eruptions, from the south to north by the intermediate-basic to acid conversion. The volcanic vents are gradually young from south to north. According to information of the re-processing 3D seismic data and gravity-magnetic data, the large volcanic vent or conduit was mainly beaded-distributed along the main fault. The volcanic rocks thickness in Yingcheng formation was changed by the deep faults and basement boundary line. Compared with the clastic rocks, volcanic rocks in Changling area are with high resistance and velocity (4900-5800), abnormal Gamma. All kinds of volcanic rocks are with abnormal strong amplitude reflection on the seismic stacked section except tuff. By analyzing the seismic facies characteristics of volcanic rocks, optimizing seismic attributes constrained by logging, using seismic amplitude and waveforms and other attributes divided volcanic rocks of Yingcheng formation into four seismic zones in map. Currently, most volcanic gas reservoirs are fault-anticline and fault-nose structure. But the volcanic dome lithologic gas reservoirs with large quantity and size are the main gas reservoir types to be found.
Resumo:
During the Devonian, a complicated carbonate platform-basin configuration was created through transtensional rifting in the context of opening of Devonian South China Sea; extensive bedded chert, commonly interbedded with tuffaceous beds, occurred in the narrow, elongate interplatform basins (or troughs) in South China, where they occurred earlier (Early Devonian) in southern Guangxi and later (early Late Devonian) in northern Guangxi-south central Hunan. In order to unravel the origin and distribution of the bedded chert successions, and their relationships to basement faulting activities during the opening of the Devonian South China Sea, studies of element (major, minor and REE) geochemistry and Rb-Sr, Sm-Nd isotopic systematics are carried out upon the chert deposits. These chert deposits commonly have high SiO2 contents and (average 94.01%) and low TFe2O3 (average 0.55%), together with other geochemical parameters, suggestive of both biogenic and hydrothermal origins. However, Fe/Ti ratio are high along the elongate interplatform basins(troughs) to the northwest along Wuxiangling-Zhaisha-Chengbu, and to the southeast along Xiaodong-Mugui-Xinpu, suggesting relatively intense hydrothermal activities there. They generally contain very low total REE contents (∑REE average 31.21ug/g) with mediate negative Ce anomalies (mean Ce/Ce*=0.83) and low Lan/Cen values (average 1.64), indicating an overall continental margin basin where they precipitated. The northward increases in Ce/Ce* values, particularly along the elongate troughs bounded both to the east and west of the Guangxi-Huanan rift basin, suggest a northward enhancement of terrigenous influences, thereby reflecting a gradual northward propagation of open marine setting. Generally low positive Eu anomalies in the chert, except for the apparently high Eu anomalies in the chert from Chengbu (Eu/Eu* up to 4.6), suggest mild hydrothermal venting activities in general, except for those at Chengbu. The initial 87Sr/86Sr (0) ratios of chert generally vary from 0.712000 to 0.73000 , suggesting influences both from terrigenous influx and seawater. The Nd isotopic model ages (tDM or t2DM) and initial εNd (0) values of chert vary mostly from 1.5 to 2.1 Ga, and from –16 to –21, respectively, implying that the silica sources were derived from the provenances of the Palaeoproterozoic crust relics at depth. The high εNd (0) values of chert (-0.22 to 14.7) in some localities, mostly along the elongate troughs, suggest that silica sources may have been derived from deeper-seated mantle, being channeled through the interplate boundary fault zones extending downwards to the mantle. At Wuxiangling, Nanning, chert occurs extensively from the Emsian through the Frasnian strata, both U/Th ratios and tDM ages of chert reached up to a maximum in the early Frasnian corresponding to the extensive development of chert in South China, pointing to a maximum extensional stage of Devonian South China basin, which is supported by the Ce/Ce* values as is opposed to the previous datasets as the coeval minimum values.
Resumo:
The topic of Dynamic reservoir model and the distribution of remaining oil after polymer injection of Shengtuo oilfield is a front problem of "the 11th Five-Year Plan" scientific and technological disciplines of Sinopec Corporation. Reservoirs in study area is distributary channel sandstone. After 34 years of water-injection exploitation and 7 years of polymer injection pilot experiments, a highly complex heterogeneous dynamic evolution has been occurred in macro and micro parameters of reservoir model, together with its flow field. Therefore, it’s essential to construct completed reservoir dynamic model for a successfully prediction of the distribution of remaining oil. With a comprehensive application of multidisciplinary theory and technique, using a variety of data and information to maximize the use of computer technology, combining a static and dynamic, macro and micro and 1~4D integration, the research reveals main features, evolution and mechanism, types of geological disasters and their destructivity of reservoir flow field, the macro field, the micro field, the flow field and reservoir development hydrodynamic geological function in different development periods after a long term of polymer injection in Es2 in Shengtuo oilfield. The principle innovation achievements obtained are: 1. Established A, B, C, D four flow units in target formations, revealed the various features and distribution of flow units. 2. Stated environmental pollution and geological disasters induced during oilfield exploitation in study area, and also explained their formation mechanism, controlling factors, destructivity and approaches to disaster reduction. 3. Established dynamic evolution of the macro parameter model, micro-matrix field, pore network field, clay minerals field, seepage dynamic evolution model of six different exploitation stages in study area, also revealed reservoir flow evolution, the law of evolution mechanism after polymer injection. 4. Established macro and micro distribution model of remaining oil after three mining polymer injection during different water cut periods in study area, revealed the formation mechanism and distribution of remaining oil. 5. Established remaining oilforecasting model in study area, and forecasted the formation and distribution of remaining oil in the following six years. 6. It is proposed that reservoir fluid dynamic geological processes are major driving forces for the evolution of different water cut periods, reservoir macro field after the polymer injection and micro seepage field. 7. Established a dynamic reservoir model, proposed matching theory, methods and technology for the description of the remaining oil characterization and prediction, which can deepen the theory and techniques of continental rift basin development geology. Key words: Polymer reservoir; Geological disasters; Dynamic model; Residual oil forecast
Resumo:
The disequilibrium between supply and demand the east part of North China accelerated natural gas exploration in Bohai bay basin. Exploration practice showed that coal-derived gas is important resource. In searching of big to middle scaled coal derived gas field, and realize successive gas supply, the paper carried out integrated study on structural evolution of Pre-Tertiary and evaluation of reservoir forming condition of coal-derived gas. Study work of the paper was based on the following condition: available achievement in this field at present, good understanding of multiphase of tectonic movement. Study work was focused on geological evolution, source rock evaluation and dissection key factors controlling reservoir forming. Based on analysis of seismic data, drilling data, tectonic style of Pre-Tertiary was subdivided, with different tectonic style representing different tectonic process. By means of state of the art, such as analysis of balanced cross section, and erosion restoration, the paper reestablished tectonic history and analyzed basin property during different tectonic phase. Dynamic mechanism for tectonic movement and influence of tectonic evolution on tectonic style were discussed. Study made it clear that tectonic movement is intensive since Mesozoic including 2 phase of compressional movement (at the end of Indo-China movement, and Yanshan movement), 2 phase of extensional movement (middle Yanshan movement, and Himalayan movement), 2 phase of strike slip movement, as well as 2 phase of reversal movement (early Yanshan movement, and early Himalayan movement). As a result, three tectonic provinces with different remnant of strata and different tectonic style took shape. Based on afore mentioned study, the paper pointed out that evolution of Bohai bay basin experienced the following steps: basin of rift valley type (Pt2+3)-craton basin at passive continental margin (∈1-2)-craton basin at active continental margin (∈3- O)-convergent craton basin (C-T1+2)-intracontinental basin (J+K). Superposition of basins in different stage was discussed. Aimed at tectonic feature of multiple phases, the paper put forward concept model of superposition of tectonic unit, and analyzed its significance on reservoir forming. On basis of the difference among 3 tectonic movements in Mesozoic and Cenozoic, superposition of tectonic unit was classified into the following 3 categories and 6 types: continuous subsidence type (I), subsidence in Mesozoic and uplift for erosion in Cenozoic (II1), repeated subsidence and uplift in Mesozoic and subsidence in Cenozoic (II2), repeated subsidence and uplift in Mesozoic and uplift for erosion in Cenozoic (II3), uplift for erosion in Mesozoic and subsidence in Cenozoic (II4), and continuous uplift (III). Take the organic facies analysis as link, the paper established relationship between sedimentary environment and organic facies, as well as organic facies and organic matter abundance. Combined information of sedimentary environment and logging data, the paper estimated distribution of organic matter abundance. Combined with simulation of secondary hydrocarbon generation, dynamic mechanism of hydrocarbon generation, and thermal history, the paper made static and dynamic evaluation of effective source rock, i.e. Taiyuan formation and Shanxi formation. It is also pointed out that superposition of tectonic unit of type II2, type II4, and type I were the most favorable hydrocarbon generation units. Based on dissection of typical primary coal-derived gas reservoir, including reservoir forming condition and reservoir forming process, the paper pointed out key factors controlling reservoir forming for Carboniferous and Permian System: a. remnant thickness and source rock property were precondition; b. secondary hydrocarbon generation during Himalayan period was key factor; c. tectonic evolution history controlling thermal evolution of source rock was main factor that determine reservoir forming; d. inherited positive structural unit was favorable accumulation direction; e. fault activity and regional caprock determined hydrocarbon accumulation horizon. In the end, the paper established reservoir forming model for different superposition of tectonic units, and pointed out promising exploration belts with 11 of the first class, 5 of the second class and 6 of the third class.
Resumo:
Late Mesozoic-Cenozoic volcanic rocks are well exposed in Lhasa Terrane, southern Tibet. This research attempts to apply 40Ar/39Ar geochronology, major, trace element and Sr-Nd-O isotopic geochemistry data to constrain the spatio-temporal variations, the composition of source, geodynamic setting. The results indicate that Lhasa Terrane mainly went through three tectonic-magmatic cycle: (1) Phase of Oceanic subduction (140-80Ma). Along with the subducting beneath the Eurasian Plate of Neo-Tethys slab, the oceanic sediment and/or the subducting slab released fluids/melts to metasomatize the subcontinental lithospheric mantle, and induced the mantle wedge partially melt and produced the calc-alkaline continental arc volcanic rocks; (2) Phase of continental-continental collision. Following the subducting of the Neo-Tethys slab, the Indian Plate collided with the Eurasian Plate dragged by the dense Neo-Tethys oceanic lithosphere. The oceanic lithosphere detached from continental lithosphere during roll-back and break-off and the asthenosphere upwelled. The resulting conducted thermal perturbation leads to the melting of the overriding mantle lithosphere and produced the syn-collisional magmatism: the Linzizong Formation and dykes; (3) Following by the detachment of the Tethys oceanic lithosphere, the Indian Lithosphere subducted northward by the drive from the expanding of Indian Ocean. The dense Indian continental lithospheric mantle (±the thickened lower crust) break off, disturb the asthenosphere, and lead to the melting of the overriding mantle lithosphere, which has been metasomatized by the melts/fluids from the subducting oceanic/continental lithosphere and the asthenosphere, and produced the rift-related ultrapotassic rocks.
Resumo:
Located in the Central and West African, Chad, which is not well geological explored, is characterized by Mesozoic- Cenozoic intra-continental rift basins. The boreholes exposed that, during Mesozoic-Cenozoic times, volcanic activities were intense in these basins, but study on volcanic rocks is very weak, especially on those embedded in rift basins, and so far systematic and detailed work has still no carried out. Based on the project of China National Oil and Gas Exploration and Development Corporation, “The analysis of reservoir condition and the evaluation of exploration targets of seven basins in block H in Chad”, and the cooperative project between Institute of Geology and Geophysics, CAS and CNPC International (Chad) Co. Ltd., “Chronology and geochemistry studies on Mesozoic-Cenozoic volcanic rocks from southwestern Chad Basins”, systematic geochronology, geochemistry and Sr-Nd-Pb isotopic geochemistry studies on volcanic rocks from southwestern Chad basins have been done in the thesis for the first time. Detailed geochronological study using whole-rock K-Ar and Ar-Ar methods shows the mainly eruption ages of these volcanic rocks are Late Cretaceous- Paleogene. Volcanic rocks in the well Nere-1 and Figuier-1 from Doba basin are products of the Late Cretaceous which majority of the K-Ar (Ar-Ar) ages fall in the interval 95-75 Ma, whereas volcanic rocks in the well Ronier-1 from Bongor Basin and the Well Acacia-1 from Lake Chad Basin formed in the Paleogene which the ages concentrated in 66-52Ma. Two main periods of volcanic activity can be recognized in the study area, namely, the Late Cretaceous period and the Paleogene period. Volcanic activities have a general trend of south to north migration, but this may be only a local expression, and farther future studies should be carried on. Petrology study exhibits these volcanic rocks from southwestern Chad basins are mainly tholeiitic basalt. Major- and trace elements as well as Sr-Nd-Pb isotopic geochemistry studies show that the late Cretaceous and the Paleogene basalts have a definitely genetic relationship, and magmas which the basalts in southwestern Chad basins derived from were produced by fractional crystallization of olivine and clinopyroxene and had not do suffered from crustal contamination. These basalts are prominently enriched light rare earth elements (LREE), large-ion lithophile elements (LILE) and high field strength elements (HFSE) and depleted compatible elements. They have positive Ba, Pb, Sr, Nb, Ta, Zr, Hf anomalies and negative Th, U, P,Y anomalies. It is possible that the basalts from southwestern Chad basins mainly formed by mixing of depleted mantle (DM) and enriched mantle (EMⅡ) sources. The late Cretaceous basalts have higher (87Sr/86Sr)i ratios than the Paleogene basalts’, whereas have lower (143Nd/144Nd)i ratios than the latter, showing a significant temporal evolution. The mantle sources of the Late Cretaceous basalts may have more enriched mantle(EMⅡ) compositions, whereas those of the Paleogene basalts are relatively more asthenospheric mantle (DM) components. The mantle components with temporal change observed in basalts from Chad basins were probably correlated with the asthenospheric mantle upwelling and lithospheric thinning in Central and Western Africa since Mesozoic. Mesozoic- Cenozoic Volcanism in Chad basins probably is a product of intra- plate extensional stress regime, corresponded to the tectonic setting of the whole West and Central African during Cretaceous. Volcanism is closely correlated with rifting. As time passed from early period to late, the basaltic magma of Chad basins, characterized with shallower genetic depth, higher density and smaller viscosity, probably indicates the gradual strengthening evolution of the rifting. In the initial rife stage, volcanic activities are absent in the study area. Volcanic activities are basiccally corresponded with the strong extensional period of Chad basins, and the eruption of basalts was slightly lagged behind the extensional period. In the post-rift stage (30-0Ma), these basins shifted to the thermal sag phase, volcanic activities in the study area significantly decreased and then terminated.
Resumo:
The dynamic environments of mineralization in Mesozoic Jiaodong gold mine concentrated area can be devided into two types, compressive environment which related to intracontinental collision and extensional environment which related to intracontinental volcanic rift. The altered rock type (Jiaojia type) and quartz vein type (Linglong type) which related to the former one, were discovered for several years, and became the main types of gold deposits in recent years. A new type gold deposit, syn-detachment altered tectonic breccia type gold deposit, such as Pengjiakuang gold deposit and Songjiagou gold deposit has been discovered on the northeastern margin of Jiaolai Basin. In this paper, the new type of gold deposit has been studied in detail. The study area is located at the northeastern boundaries of Jiaolai Basin, and between the Taocun-Jimo Fault and Wji-Haiyang Fault, in the eastern part of the Jiaodong Block. Pengjiakuang gold deposit and Songjiagou gold deposit occur in a arc-shape detachment fault zone between conglomerate of Lower Cretaceous Laiyang Formation and metamorphic complex of Lower Proterozoic Jingshan Group. Regional geological studies show that Kunyuanshan and Queshan granite intrusions and Qingshanian volcanism were formed in different period of lithospheric thinning of East China in Mesozoic. Granite intrusions were formed in compressive environment, while Qingshanian volcanism were formed in extensional environment. They are all related to the detachment of Sulu Orogenic Belt and the sinistral motion of Tanlu Fault. The Pengjiakuang detachment systems which were formed in the the sinistral motion of Tanlu Fault are the important ore-controlling and ore-containing structure. The Pengjiakuang type gold deposit, controlled by detachment structure, was formed before Yanshanian volcanic period concerning with mixture of meteoric water and magmatic water found in fluid inclusions of gold ores. The minerogenetic epoch has been proposed in 90~120Ma. the host rocks have been extensively subjected to pyritization, silicification, sericitization and carbonatization. Individual ore-body has maximum length of 800m, oblique extension of 500~700m and gold grade of 1~43 * 10~(-6). Native gold is disseminated in silicified, phyllic or carbonatized tectonic breccia. Sulfur, carbon and lead isotope studies on gold ores and wall rocks show that the sulfur come from the metamorphic complex of Lower Proterozoic Jingshan Group, carbon comes from the marble in Jingshan Group, while a part of lead comes from the mantle. The mineralizing fluid is rich in Na~+ and Cl~-, but relatively impoverished in K~+ and F~-. According to the date from hydrogen and oxygen isotopic compositions (δ~(18)OH_2O = 0.59%~4.03%, δDH_2O = -89.5%~97.9%), the conclusion can be reached that the mineralizing fluid of Pengjiakuang gold deposit was a kind of mixed hydrothermal solution which was mainly composed of meteoric water and magmatic water. A genetical model has been formulated. Some apparent anomaly features which show low in the central part and high in the both sides corresponding to the gold-bearing structure, were sum up after analying a vast amount of date by prospecting the orebodies using gamma-ray spectrometer, electrogeochemical parameter technique, controlled source audio magnetic telluric (CSAMT) and shallow surface thermometry in Pengjiakuang gold deposit. The location forecasting problem of buried orebodies has been solved according to these features, and the successful rate is very high in well-drilling. The structural geological-geophysical-geochemical prospecting model has been formulated on the base of the study of geological, geophysical and geochemical characteristics of Pengjiakuang type gold deposit, and the optimum combinational process of geophysical and geochemical prospecting techniques has been summed up. A comparative study shows that the Pengjiakuang type gold deposit, the syn-detachment altered tectonic breccia type gold deposit, is different from Jiaojia type gold deposits and Linglong type gold deposits, in Jiaodong Block. In general, if formed under an extensional tectonic condition and located at detachment fault zone along the margin of Mesozoic Jiaolai basin, and the gold mineralization has also close genetic relationship with alkaline magamtism. Being a new type of gold deposit in Jiaodong gold mine concentrated area, it could be potential to explore in the same regions which processed the same ore-forming geological conditions and mineralization informations.