13 resultados para Methods of suicide
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Assessment of Microscale Test Methods of Peeling and Splitting along Surface of Thin-Film/Substrates
Resumo:
Peel test methods are assessed through being applied to a peeling analysis of the ductile film/ceramic substrate system. Through computing the fracture work of the system using the either beam bend model (BB model) or the general plane analysis model (GPA model), surprisingly, a big difference between both model results is found. Although the BB model can capture the plastic dissipation phenomenon for the ductile film case as the GPA model can, it is much sensitive to the choice of the peeling criterion parameters, and it overestimates the plastic bending effect unable to capture crack tip constraint plasticity. In view of the difficulty of measuring interfacial toughness using peel test method when film is the ductile material, a new test method, split test, is recommended and analyzed using the GPA model. The prediction is applied to a wedge-loaded experiment for Al-alloy double-cantilever beam in literature.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known for indentation in elastic and in elastic–plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. When the unloading rate is slow, a “hold” period between loading and unloading can be used to provide a correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and “hold-at-the-maximum-indenter-displacement” for determining the instantaneous modulus using spherical indenters.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. When the unloading rate is slow, a "hold" period between loading and unloading can be used to provide a correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and "hold-at-the-maximum-indenter-displacement" for determining the instantaneous modulus using spherical indenters.
Resumo:
In this paper, common criterions about residual strength evaluation at home and abroad are generalized and seven methods are acquired, namely ASME-B31G, DM, Wes-2805-97, CVDA-84, Burdekin, Irwin and J integral methods. BP neural network are Combined with Genetic Algorithm (GA) named by modified BP-GA methods to successfully predict residual strength and critical pressure of injecting water, corrosion pipelines. Examples are shown that calculation results of every kind of method have great difference and calculating values of Wes-2805-97 criterion, ASME-B31G criterion, CVDA-84 criterion and Irwin fracture mechanics model are conservative and higher than, those of J integral methods while calculating values of Burdiken model and DM fracture mechanics model are dangerous and less than those of J integral methods and calculating values of modified BP-GA methods are close and moderate to those of J integral methods. Therefore modified BP-GA methods and J integral methods are considered better methods to calculate residual strength and critical pressure of injecting water corrosion pipelines
Resumo:
Nine base-quartets were calculated by six semi-empirical methods and ab initio Hartree-Fork method using STO-3G basis set. The results showed that PM3 method can be use to calculate base quartets, the results of PM3 calculations are close to the ab initio
Resumo:
Improved methods of reduction of bend loss of silicon-on-insulator waveguides were simulated and analyzed by means of effective index method (EIM) and two dimensional beam propagation method (2D-BPM). The simulation results indicate that two different methods, one of which are introducing an offset at the junction of two waveguides and the other is etching groove at the outside of bend waveguide, can decrease bend loss. And the later one is more effective. Meanwhile, experiments validate them. By etching groove, the insertion loss of bend waveguide of R = 16mm, transverse displacement 70mum was decreased 5dB. And its bend loss was almost eliminated.
Resumo:
In this paper, the comparison of orthogonal descriptors and Leaps-and-Bounds regression analysis is performed. The results obtained by using orthogonal descriptors are better than that obtained by using Leaps-and-Bounds regression for the data set of nitrobenzenes used in this study. Leaps-and-Bounds regression can be used effectively for selection of variables in quantitative structure-activity/property relationship(QSAR/QSPR) studies. Consequently, orthogonalisation of descriptors is also a good method for variable selection for studies on QSAR/QSPR.
Resumo:
Pure X-ray diffraction profiles have been analysed for polyamide 1010 and PA1O1O-BMI system by means of multipeak fitting resolution of X-ray diffraction. The methods of variance and fourth moment have been applied to determine the particle size and strain values for the paracrystalline materials. The results indicated that both variance and fourth moment of X-ray diffraction line profile yielded approximately the same values of the particle size and the strain. The particle sizes of (100) reflection have been found to decrease with increasing BMI content, whereas the strain values increased.