15 resultados para Methods for Multi-criteria Evaluation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study attempts to model alpine tundra vegetation dynamics in a tundra region in the Qinghai Province of China in response to global warming. We used Raster-based cellular automata and a Geographic Information System to study the spatial and temporal vegetation dynamics. The cellular automata model is implemented with IDRISI's Multi-Criteria Evaluation functionality to simulate the spatial patterns of vegetation change assuming certain scenarios of global mean temperature increase over time. The Vegetation Dynamic Simulation Model calculates a probability surface for each vegetation type, and then combines all vegetation types into a composite map, determined by the maximum likelihood that each vegetation type should distribute to each raster unit. With scenarios of global temperature increase of I to 3 degrees C, the vegetation types such as Dry Kobresia Meadow and Dry Potentilla Shrub that are adapted to warm and dry conditions tend to become more dominant in the study area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High dimensional biomimetic informatics (HDBI) is a novel theory of informatics developed in recent years. Its primary object of research is points in high dimensional Euclidean space, and its exploratory and resolving procedures are based on simple geometric computations. However, the mathematical descriptions and computing of geometric objects are inconvenient because of the characters of geometry. With the increase of the dimension and the multiformity of geometric objects, these descriptions are more complicated and prolix especially in high dimensional space. In this paper, we give some definitions and mathematical symbols, and discuss some symbolic computing methods in high dimensional space systematically from the viewpoint of HDBI. With these methods, some multi-variables problems in high dimensional space can be solved easily. Three detailed algorithms are presented as examples to show the efficiency of our symbolic computing methods: the algorithm for judging the center of a circle given three points on this circle, the algorithm for judging whether two points are on the same side of a hyperplane, and the algorithm for judging whether a point is in a simplex constructed by points in high dimensional space. Two experiments in blurred image restoration and uneven lighting image correction are presented for all these algorithms to show their good behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layers TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHAs structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHAs structure parameters and deflection rate, especially the key factors effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aiming at the character of Bohaii Sea area and the heterogeneity of fluvial facies reservoir, litho-geophysics experiments and integrated research of geophysical technologies are carried out. To deal with practical problems in oil fields of Bohai area, such as QHD32-6, Southern BZ25-1 and NP35-2 et al., technology of reservoir description based on seismic data and reservoir geophysical methods is built. In this dissertation, three points are emphasized: the integration of multidiscipline; the application of new methods and technologies; the integration of quiescent and dynamic data. At last, research of geology modeling and reservoir numerical simulation based on geophysical data are integrated. There are several innovative results and conclusion in this dissertation: (1)To deal with problems in shallow sea area where seismic data is the key data, a set of technologies for fine reservoir description based on seismic data in Bohai Sea area are built. All these technologies, including technologies of stratigraphic classification, sedimentary facies identification, structure fine characterization, reservoir description, fluid recognition and integration of geological modeling& reservoir numerical simulation, play an important role in the hydrocarbon exploration and development. In the research of lithology and hydrocarbon-bearing condition, petrophysical experiment is carried out. Outdoors inspection and experiment test data are integrated in seismic forward modeling& inversion research. Through the research, the seismic reflection rules of fluid in porosity are generated. Based on all the above research, seismic data is used to classify rock association, identify sedimentary facies belts and recognition hydrocarbon-bearing condition of reservoir. In this research, the geological meaning of geophysical information is more clear and the ambiguity of geophysical information is efficiently reduced, so the reliability in hydrocarbon forecasting is improved. The methods of multi-scales are developed in microfacies research aiming at the condition of shallow sea area in Bohai Sea: make the transformation from seismic information to sedimentary facies reality by discriminant analysis; in research of planar sedimentary facies, make microfacies research on seismic scale by technologies integration of seismic multi-attributes analysis& optimization, strata slicing and seismic waveform classification; descript the sedimentary facies distribution on scales below seismic resolution with the method of stochastic modeling. In the research of geological modeling and reservoir numerical simulation, the way of bilateral iteration between modeling and numerical simulation is carried out in the geological model correction. This process include several steps: make seismic forward modeling based on the reservoir numerical simulation results and geological models; get trend residual of forward modeling and real seismic data; make dynamic correction of the model according to the above trend residual. The modern integration technology of reservoir fine description research in Bohai Sea area, which is developed in this dissertation, is successfully used in (1)the reserve volume evaluation and development research in BZ25-1 oil field and (2)the tracing while drilling research in QHD32-6 oil field. These application researches show wide application potential in hydrocarbon exploration and development research in other oil fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PetroChina and other national petroleum incorporations need rigorous procedures and practical methods in risk evaluation and exploration decision at home and abroad to safeguard their international exploration practice in exploration licence bidding, finding appropriate ratio of risk sharing with partners, as well as avoiding high risk projects and other key exploration activities. However, due to historical reasons, we are only at the beginning of a full study and methodology development in exploration risk evaluation and decision. No rigorous procedure and practical methods are available in our exercises of international exploration. Completely adopting foreign procedure, methods and tools by our national incorporations are not practical because of the differences of the current economic and management systems in China. The objective of this study is to establish a risk evaluation and decision system with independent intellectual property right in oil and gas exploration so that a smooth transition from our current practice into international norm can take place. The system developed in this dissertation includes the following four components: 1. A set of quantitative criteria for risk evaluation is derived on the basis of an anatomy of the parameters from thirty calibration regions national wide as well as the characteristics and the geological factors controlling oil and gas occurrence in the major petroleum-bearing basins in China, which provides the technical support for the risk quantification in oil and gas exploration. 2. Through analysis of existing methodology, procedure and methods of exploration risk evaluation considering spatial information are proposed. The method, utilizing Mahalanobis Distance (MD) and fuzzy logic for data and information integration, provides probabilistic models on the basis of MD and fuzzy logic classification criteria, thus quantifying the exploration risk using Bayesian theory. A projection of the geological risk into spatial domain provides a probability map of oil and gas occurrence in the area under study. The application of this method to the Nanpu Sag shows that this method not only correctly predicted the oil and gas occurrence in the areas where Beibu and Laoyemiao oil fields are found in the northwest of the onshore area, but also predicted Laopu south, Nanpu south and Hatuo potential areas in the offshore part where exploration maturity was very low. The prediction of the potential areas are subsequently confirmed by 17 exploration wells in the offshore area with 81% success, indicating this method is very effective for exploration risk visualization and reduction. 3. On the basis of Methods and parameters of economic evaluation for petroleum exploration and development projects in China, a pyramid method for sensitivity analysis was developed, which meets not only the need for exploration target evaluation and exploration decision at home, but also allows a transition from our current practice to international norm in exploration decision. This provides the foundation for the development of a software product Exploration economic evaluation and decision system of PetroChina (EDSys). 4. To solve problem in methodology of exploration decision, effort was made on the method of project portfolio management. A drilling decision method was developed employing the concept of geologically risked net present value. This method overcame the dilemma of handling simultaneously both geological risk and portfolio uncertainty, thus casting light into the application of modern portfolio theory to the evaluation of high risk petroleum exploration projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(Leymuschinensis (Trin.)Tzvel)(llelia thus annuus L) 1 AFLP 2 31 3 AFLP AFLP 4AFLP 3TNEcoRJ (n=17)( Compositae)(Helia thus)90%PETI(G20023)G20023FiPETI 1 G2002324 H.maximilianiG20023 G20023PETI 2 G20023 orfH522PETI;atp6 PETIANTI orf873ANTIG20023 G20023ANTIPETI 3 DNA DNA DNA 4 G20023

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UUVUUV863UUV (1) UUVUUVUUVUUVPetri (2) UUVUUV (3) UUVMACSACSMACSMACSACS (4) UUVUUVUUVUUVUUV UUV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anchorages are unparalleled structures only in a suspension bridge, and as main bearing facilities, play an important role in connecting the superstructures and the ground. The tunnel anchorage, as one alternative type of the anchorages, has more advantages over its counterpart, the gravity anchorage. With the tunnel anchorages adopted, not only can surface excavation be reduced to protect the environment, and natural condition of the rock be utilized and potential bearing capacity of surrounding rock be mobilized to save engineering cost, but also the technological predominance of auxiliary engineering measures, such as prestressed concrete, anchoring piles, rock anchors and collar beam between the two separated anchorages, can be easily cooperated to work together harmoniously under the circumstances of poor rock quality. There are plentiful high mountains and deep canyons in west part of China, and long-span bridge construction is inevitably encountered in order to realize leapfrogging development of the transportation infrastructure. Western mountainous areas usually possess the conditions for constructing tunnel anchorages, and therefore, the tunnel anchorages, which are conformed to the conception of resource conservative and sustainable society, extremely have application and popularization value in western underdeveloped region. The scientific and technological problem about the design, construction and operation of tunnel anchorages should be further investigated. Combining the engineering of western tunnel anchorages for the Balinghe Suspension Bridge, this paper probed into the survey method and in-situ test method for tunnel anchorages, scientific rock quality evaluation of surrounding rock to provide reasonable physical and mechanical parameters for design, construction and operation of tunnel anchorages, bearing capacity estimation for tunnel anchorage, deformation prediction of the anchorage-rockmass system, tunnel-anchorage slope stability analysis and the evaluation of excavation stability and degree of safety of the anchorage tunnel. The following outcomes were obtained: 1. Materials of tunnel anchorages of suspension bridge built (and in progress) at home and abroad were systematically sorted out, with the engineering geological condition and geomechanical property of surrounding rock around the anchorage tunnel, the design size of anchorages and the construction method of anchorage tunnel paid more emphasis on, to unveil the internal relationship between the engineering geological conditions of surrounding rock and the design size and axis angle of anchorages and provide references for future design, construction and study of tunnel anchorages. 2. Physical and mechanical parameters were recommended based on three domestic and foreign methods of rock quality evaluation. 3. In-situ tests, adopting the back-thrust method, of two kinds of reduced scale model, 1/30 and 1/20, for the tunnel anchorages were conducted in the declining exploration drift with rock mass at the test depth being the same as surrounding rock around real anchorages, and reliable field rockmass displacement data were acquired. Attenuation relation between the increment of distance from the anchorage and the decrement of rockmass displacement under maximum test load, and influential scope suffered by anchorage load were obtained. 4. Using similarity theory, the magnitude of real anchorage and rockmass displacement under design load and degree of safety of the anchorage system were deduced. Furthermore, inversion analysis to deformation modulus of slightly weathered dolomite rock, the surrounding rock of anchorage tunnel, was performed by the means of numerical simulation. 5. The influential law of the geometrical size to the limit bearing capacity of tunnel anchorage was studied. 6. Based on engineering geological survey data, accounting for the combination of strata layer and adverse discontinuities, the failure patterns of tunnel anchorage slope were divided into three modes: sliding of splay saddle pier slope, superficial-layer slippage, and deep-layer slippage. Using virtual work principle and taking anchorage load in account, the stability of the three kinds of failure patterns were analyzed in detail. 7. The step-by-step excavation of anchorage tunnel, the numerical overload and the staged decrement of rock strength parameters were numerically simulated to evaluate the excavation stability of surrounding rock around anchorage tunnel, the overload performance of tunnel anchorage, and the safety margin of strength parameters of the surrounding rock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To deal with the problems in multi-component converted seismic wave exploration in coal fields, the wave propagating features and imaging methods of multi-component converted waves in coal measure strata are researched in this thesis firstly. The relations between viscoelasticity and anisotropy in coal measure strata are analyzed to build KEL-TI model, and which seismic wave propagating and attenuating features are researched. The disadvantages of converted wave imaging methods based on common converted point gather are analyzed and constant velocity no NMO converted wave imaging method based on common scattering point gather is put forward, according to Huygens-Fresnel principle, which applicabilities in the elastic isotropic, elastic TI and KEL-TI situations are discussed. To different model simulation data, the common scattering point gathers and stacked profiles features are analyzed. The results show that the method can image compressional waves and converted waves with high precision. Secondly, the resolution enhancing theories and methods of converted wave are researched by Rayleigh wave suppressing, converted wave static correction and poststack inverse-Q filtering. 1) The polarization filter is designed by the instantaneous polarization information of seismic waves, and the Rayleigh wave suppressing method is researched. From the spectrum analysis before and after filtering, it can be derived that the amplitudes are kept relatively. 2) To constant velocity no NMO converted wave imaging method, the static correction method based on common equivalent offset point gather is put forward and tested to the actual converted waves. 3) The relation between equivalent quality factor of converted wave, compressional wave quality factor and the ratio of compressional to shear wave velocity is derived. The compressional wave quality inversion method by first arrivals of none-offset VSP is researched, and which is then transformed to the equivalent quality factor to perform inverse-Q filtering of actual converted waves. The result has shown that the method can recover the high frequency energy of converted waves. At last, the theories and methods researched in this thesis are practiced to the 3D3C seismic exploration in Guqiao coal mine in Huainan and achieve good results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we report the effects of ferricyanide on organisms based on the changes in physiological state and morphology of Escherichia coli (E coli) DH 5 alpha after being pretreated by ferricyanide. The impact on bacterial cell growth and viable rate of exposure to different concentrations of ferricyanide was determined, and the morphology change of E. coli was studied by atomic force microscopy (AFM). Finally, recovery test was used to evaluate the recovery ability of injured cells. The results showed that the effects on growth and morphology of E. coli were negligible when the concentration of ferricyanide was below 25.0 mM. While the results showed 50.8% inhibition of growth in the presence of 50.0 mM ferricyanide for 3 h, 89.6% viability was detected by flow cytometry (FCM) assay. AFM images proved that compact patches appeared on the bacterial surface and protected the bacterial viability. Furthermore, the results revealed that deterioration of bacterial surface closely related to the incubation time from 0.5 to 3 h at 100.0 mM ferricyanide. In the recovery test, microbial cell population and dissolved oxygen individually decreased 36.7% and 28.3% with 25.0 mM ferricyanide.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effectiveness of Oliver & Pharr's (O&P's) method, Cheng & Cheng's (C&C's) method, and a new method developed by our group for estimating Young's modulus and hardness based on instrumented indentation was evaluated for the case of yield stress to reduced Young's modulus ratio (sigma(y)/E-r) >= 4.55 x 10(-4) and hardening coefficient (n) <= 0.45. Dimensional theorem and finite element simulations were applied to produce reference results for this purpose. Both O&P's and C&C's methods overestimated the Young's modulus under some conditions, whereas the error can be controlled within +/- 16% if the formulation was modified with appropriate correction functions. Similar modification was not introduced to our method for determining Young's modulus, while the maximum error of results was around +/- 13%. The errors of hardness values obtained from all the three methods could be even larger and were irreducible with any correction scheme. It is therefore suggested that when hardness values of different materials are concerned, relative comparison of the data obtained from a single standard measurement technique would be more practically useful. It is noted that the ranges of error derived from the analysis could be different if different ranges of material parameters sigma(y)/E-r and n are considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Jiyang superdepression is one of the richest hydrocarbon accumulations in the Bohai Bay basin, eastern China. Comprehensive seismic methods have been used in buried hill exploration in Jiyang to describe these fractured reservoirs better. Accurate seismic stratigraphic demarcation and variable-velocity mapping were applied to reveal the inner structure of the buried hills and determine the nature of the structural traps more precisely. Based on the analysis of rock properties and the characteristics of well-developed buried hill reservoirs, we have successfully linked the geology and seismic response by applying seismic forward technology. Log-constrained inversion, absorption coefficient analysis and tectonic forward-inversion with FMI loggings were applied to analyse and evaluate the buried hill reservoirs and gave satisfying results. The reservoir prediction was successful, which confirmed that the comprehensive utilization of these methods can be helpful in the exploration of buried hill reservoirs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sulige Gasfield, with a basically proven reserve as high as one trillion cubic meters, is one giant gas field discovered in China. The major gas -bearing layers are Upper Paleozoic strata with fluvial-lacustrine sedimentary facies. Generally, gas reservoirs in this field are characteristic by "five low" properties, namely low porosity, low permeability, low formation pressure, low productivity and low gas abundance. Reservoirs in this field also feature in a large distribution area, thin single sandbody thickness, poor reservoir physical properties, thin effective reservoir thickness, sharp horizontal and/or vertical changes in reservoir properties as well as poor connectivity between different reservoirs. Although outstanding achievements have been acquired in this field, there are still several problems in the evaluation and development of the reservoirs, such as: the relation between seismic attributes and reservoir property parameters is not exclusive, which yields more than one solution in using seismic attributes to predict reservoir parameters; the wave impedance distribution ranges of sandstone and mudstone are overlapped, means it is impossible to distinguish them through the application of post-stack impedance inversion; studies on seismic petrophysics, reservoir geophysical properties, wave reflection models and AVO features have a poor foundation, makes it difficult to recognize the specific differences between tight sandstone and gas-bearing sandstone and their distribution laws. These are the main reasons causing the low well drilling success rate and poor economic returns, which usually result in ineffective development and utilization of the field. Therefore, it is of great importance to perform studies on identification and prediction of effective reservoirs in low permeable sandstone strata. Taking the 2D and 3D multiwave-multicomponent seismic exploration block in Su6-Su5 area of Sulige field as a study area and He 8 member as target bed, analysis of the target bed sedimentary characteristics and logging data properties are performed, while criteria to identify effective reservoirs are determined. Then, techniques and technologies such as pre-stack seismic information (AVO, elastic impedance, wave-let absorption attenuation) and Gamma inversion, reservoir litological and geophysical properties prediction are used to increase the precision in identifying and predicting effective reservoirs; while P-wave and S-wave impedance, ratio of P/S wave velocities, rock elastic parameters and elastic impedance are used to perform sandstone gas-bearing property identification and gas reservoir thickness prediction. Innovative achievements are summarized as follows: 1. The study of this thesis is the first time that multiwave-multicomponent seismic data are used to identify and predict non-marine classic reservoirs in China. Through the application of multiwave-multicomponents seismic data and integration of both pre-stack and post-stack seismic data, a set of workflows and methods to perform high-precision prediction of effective reservoirs in low permeable sandstone is established systematically. 2. Four key techniques to perform effective reservoir prediction including AVO analysis, pre-stack elastic wave impedance inversion, elastic parameters inversion, and absorption attenuation analysis are developed, utilizing pre-stack seismic data to the utmost and increasing the correct rate for effective reservoir prediction to 83% from the former 67% with routine methods. 3. This thesis summarizes techniques and technologies used in the identification reservoir gas-bearing properties using multiwave-multicomponent seismic data. And for the first time, quantitative analysis on reservoir fluids such as oil, gas, and/or water are carried out, and characteristic lithology prediction techniques through the integration of pre-stack and post-stack seismic prediction techniques, common seismic inversion and rock elastic parameters inversion, as well as P-wave inversion and converted wave inversion is put forward, further increasing the correct rate of effective reservoir prediction in this area to 90%. 4. Ten seismic attribute parameters are selected in the 3D multi-wave area to perform a comprehensive evaluation on effective reservoirs using weighted-factor method. The results show that the first class effective reservoir covers an area of 10.08% of the study area, while the second and the third class reservoirs take 43.8% and 46% respectively, sharply increasing the success rate for appraisal and development wells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A multi-plate (NIP) mathematical model was proposed by frontal analysis to evaluate nonlinear chromatographic performance. One of its advantages is that the parameters may be easily calculated from experimental data. Moreover, there is a good correlation between it and the equilibrium-dispersive (E-D) or Thomas models. This shows that it can well accommodate both types of band broadening that is comprised of either diffusion-dominated processes or kinetic sorption processes. The MP model can well describe experimental breakthrough curves that were obtained from membrane affinity chromatography and column reversed-phase liquid chromatography. Furthermore, the coefficients of mass transfer may be calculated according to the relationship between the MP model and the E-D or Thomas models. (C) 2004 Elsevier B.V. All rights reserved.