270 resultados para Methanol as fuel
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Layer-by-layer (LBL) self-assembly is a simple and elegant method of constructing organic-inorganic composite thin films from environmentally benign aqueous solutions. In this paper, we utilize this method to develop proton-exchange membranes for fuel cells. The multilayer film is constructed onto the surface of sulfonated poly(arylene ether ketone) (SPAEK-COOH) membrane by LBL self-assembly of polycation chitosan (CTS) and negatively charged inorganic particle phosphotungstic acid (VIA). The highly conductive inorganic nanoparticles ensure SPAEK-COOH-(CTS/PTA)(n) membranes to maintain high proton conductivity values up to 0.086 S cm(-1) at 25 degrees C and 0.24S cm(-1) at 80 degrees C, which are superior than previous LBL assembled electrolyte systems.
Resumo:
Electrospun carbon nanofiber-supported bimetallic PtxAu100-x electrocatalysts (PtxAu100-x/CNF) were prepared by electrochemical codeposition method. The composition of PtAu bimetallic nanoparticles could be controlled by varying the ratio of H2PtCl6 and HAuCl4. Scanning electron microscopy images showed that bimetallic nanoparticles had coarse surface morphology with high electrochemically active surface areas. X-ray diffraction analysis testified the formation of PtAu alloys. PtxAu100-x/CNF electrocatalysts exhibited improved electrocatalytic activities towards formic acid oxidation by providing the selectivity of the reaction via dehydrogenation pathway and suppressing the formation/adsorption of poisoning CO intermediate, indicating that PtxAu100-x/CNF is promising electrocatalyst in direct formic acid fuel cells.
Resumo:
A carbon supported Pt-Ru (Pt-Ru/C-T) catalyst can be prepared by a chemical reduction method in an aqueous solution with tetrahydrofuran (THF) at room temperature. The Pt-Ru particles possess high alloying, small average size and a low relative crystallinity. The electrocatalytic activity of the prepared Pt-Ru/C catalyst for methanol oxidation is much higher than that of commercial Pt-Ru/C (Pt-Ru/C-E) catalysts which have a similar average size and relative crystallinity, but the alloying extent is much lower than that in our Pt-Ru/C-T catalyst. The results illustrate that the alloying extent of Pt and Ru in the Pt-Ru/C catalyst plays an important role in the electrocatalytic activity of the Pt-Ru/C catalyst for methanol oxidation.
Resumo:
An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed consists of 11 parallel straight channels. The length, width and depth of single channel, which had rectangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 mm. The experimental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bubbles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.
Resumo:
直接甲醇燃料电池与间接甲醇燃料电池相比,体积更小,重量更轻,因此在一些领域有诱人的应用前景。但是,在它们实际应用之前,必须解决一些具体的技术难题。目前,甲醇从阳极透过到阴极是影响电池性能的主要难题之一,另外,催化剂和电极的制备方法也对电池的性能有重要的影响。本论文的主要目的在于研制低甲醇透过直接甲醇燃料电池并有效地提高电池的性能。为了减小甲醇在Nafion117膜中的透过,提出并研制了铭纳米粒子修饰的Nafion复合膜,该方法包括与[Pd(NH_4)_4]~(2+)离子的离子交换过程和化学还原过程。研究了一种制备高分散性铂基催化剂的方法。另外我们还研究并分析了不同的电池运行参数,例如温度、甲醇浓度等,刘一电池性能和甲醇透过的影响。主要结果如下:1.采用离子交换还原法在Nafionll7膜内部沉积纳米把粒子,制备成高聚物电解质复合膜。研究了镀把前后Nafion膜表面形态、甲醇透过和膜的电导的变化和对直接甲醇燃料电池的性能的影响等。由于把纳米粒子阻碍了甲醇透过,同时,由于它对氢离子的强吸引力,不但不对氢离子的透过产生影响,而且还提高了膜佩狗电导。所以镀把后电解质膜的甲醇透过减少,膜电导增加,无论在低电流密度区还是在高电流密度区,电池性能都有效地提高。2.研究了一种制备高分散性铂基催化剂的新方法一预沉淀还原法。并采用TEM,XRD和电化学等技术来表征催化剂中铂的粒径、晶态结构和催化活性:与传统的化学还原法相比,因为该方法在化学还原过程中反应物与载体的作用力得到增强,所以采用该方法制备的催化剂铂分散性更好、晶态结构更低、粒径更小并且催化活性更好。该方法在直接甲醇燃料一电池中有应用价值。3.研究并分析了不同的电池运行参数,例如温度、甲醇浓度等,对电池性能和甲醇透过的影响。研究发现当电池运行温度增加时,电池性能提高,甲醇透过增加;甲醇浓度增加时,甲醇透过增加,但是,甲醇浓度对电池性能有不同的影响,在低甲醇浓度区,甲醇浓度增加,电池性能提高;在高甲醇浓度区,甲醇浓度增加,电池性能降低;存在一个最佳甲醇浓度,在该甲醇浓度的条件下,电池的性能最高。实验结果为:采用Nafion117膜时,电池的最佳甲醇浓度为2. 0 mol/L,采用镀把Nafion117膜时,电池的最佳甲醇浓度高于4.0 mol/Lo
Resumo:
Experimental study of a liquid fed direct methanol fuel cell has been conducted in different gravity environments. A small single cell with 5 cm x 5 cm active area has single serpentine channel on the graphite cathode polar plate and 11 parallel straight channels on the graphite anode flow bed. Cell voltage and current have been measured and two-phase flow in anode channels has been in situ visually observed. The experimental results indicate that the effect of gravity on power performance of the direct methanol fuel cell is large when the concentration polarization governs fuel cells operation. Gravitational effect becomes larger at higher current density. Increasing methanol feeding molarity is conducive to weaken the influence of gravity on performance of liquid fed direct methanol fuel cells. Increasing feeding flow rate of methanol solution from 6 to 15 ml/min could reduce the size of carbon dioxide bubbles, while the influence of gravity still exist. Transport phenomena inside direct methanol fuel cells in microgravity is also analyzed and discussed.
Resumo:
Black Pearls 2000 (designated as BP- 2000) and Vulcan XC-72 (designated as XC-72) carbon blacks were chosen as supports to prepare 40 wt % (the targeted value) Pt/C catalysts by a modified polyol process. The carbon blacks were characterized by N-2 adsorption and Fourier tranform infrared spectroscopy. The prepared catalysts were characterized by inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, scanning electron microscopy (SEM), in situ cyclic voltammetry, and current-voltage curves. On BP- 2000, Pt nanoparticles were larger in size and more unevenly distributed than on XC-72. It was observed by SEM that the corresponding catalyst layer on BP- 2000 was thicker than that of XC-72 based catalyst at almost the identical catalyst loading. And the BP- 2000 supported catalyst gave a better single cell performance at high current densities. These results suggest that the performance improvement is due to the enhanced oxygen diffusion and water removal capability when BP- 2000 is used as cathode catalyst support. (C) 2004 The Electrochemical Society.
Resumo:
A 40 wt% Pt/C cathode electrocatalyst with controlled Pt particle size of similar to 2.9 nm showing better performance than commercial catalyst for direct methanol fuel cell was prepared by a polyol process with water but without using stabilizing agent.
Resumo:
Multi-walled carbon nanotubes supported Pt-Fe cathodic catalyst shows higher specific activity towards oxygen reduction reaction as compared to Pt/MWNTs when employed as cathodic catalyst in direct methanol fuel cell.
Resumo:
Multiwalled carbon nanotube-supported Pt (Pt/MWNT) nanocomposites were prepared by both the aqueous solution reduction of a Pt salt (HCHO reduction) and the reduction of a Pt ion salt in ethylene glycol solution. For comparison, a Pt/XC-72 nanocomposite was also prepared by the EG method. The Pt/MWNT catalyst prepared by the EG method has a high and homogeneous dispersion of spherical Pt metal particles with a narrow particle-size distribution. TEM images show that the Pt particle size is in the range of 2-5 nm with a peak at 2.6 nm, which is consistent with 2.5 nm obtained from the XRD broadening calculation. Surface chemical modifications of MWNTs and water content in EG solvent are found to be the key factors in depositing Pt particles on MWNTs. In the case of the direct methanol fuel cell (DMFC) test, the Pt/MWNT catalyst prepared by EG reduction is slightly superior to the catalyst prepared by aqueous reduction and displays significantly higher performance than the Pt/XC-72 catalyst. These differences in catalytic performance between the MWNT-supported or the carbon black XC-72-supported catalysts are attributed to a greater dispersion of the supported Pt particles when the EG method is used, in contrast to aqueous HCHO reduction and to possible unique structural and higher electrical properties when contrasting MWNTs to carbon black XC-72 as a support.