44 resultados para Metal-oxygen bonds
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new polyoxometalate [Co(phen)(3)](2)[HPMo4V Mo-4(VI) V-6(IV) M2O44]center dot 4H(2)O (M = 0.78Mo(V)+ 0.22V(IV)) 1 was hydrothermally synthesized and characterized by IR, elemental analyses, X-ray photoelectron spectrum, ESR and single crystal X-ray diffraction. The title compound is in the triclinic space group P (1) over bar with a = 12.0953(7) angstrom, b = 14.0182(6) angstrom, c = 14.6468(7) angstrom, V=2402.55(18) angstrom(3), alpha = 105.134(2), beta = 91.841(3), gamma = 91.401(2), Z = 1, and R-1 (wR(2)) = 0.0617 (0.1701). The compound was prepared from tetra-capped pseudo-Kepin with phosphorus-centered polyoxoanions [PMo8V6M2O44](5-) , [Co(phen)(3)](2+) cations and linked through hydrogen bonds and pi-pi stacking interaction into three-dimensional supramolecular framework. Astudy of the magnetic properties of 1 demonstrates that it exhibits antiferromagnetic coupling interactions.
Resumo:
A highly efficient Cu-catalyzed C-O bond-forming reaction of alcohol and aryl bromides has been developed. This transformation was realized through the use of copper(I) iodide as a catalyst, 8-hydroxyquinoline as a ligand, and K3PO4 as a base. A variety of functionalized substrates were found to react under these reaction conditions to provide products in good to excellent yields.
Resumo:
By the use of partial least squares (PLS) method and 27 quantum chemical descriptors computed by PM3 Hamiltonian, a statistically significant QSPR were obtained for direct photolysis quantum yields (Y) of selected Polychlorinated dibenzo-p-dioxins (PCDDs). The QSPR can be used for prediction. The direct photolysis quantum yields of the PCDDs are dependent on the number of chlorine atoms bonded with the parent structures, the character of the carbon-oxygen bonds, and molecular polarity. Increasing bulkness and polarity of PCDDs lead to decrease of log Y values. Increasing the frontier molecular orbital energies (E-lumo and E-homo) and heat of formation (HOF) values leads to increase of log Y values. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
具有特殊的物理性质(尤其是具有光、电、磁性质)的分子材料(如分子金属、分子铁磁体)是材料化学的一个新兴的领域,这些分子材料所显示出来的协同性质使其在超导体、磁性材料以及非线性光学材料等方面极具开发性质。自从1826年Berzelius合成了第一个杂多酸12-钼磷酸铵(NH_4)_3PMo_(12)O_(40)·nH_2O,多金属氧酸盐化学至今已有一百多年的历史,它是无机化学中的一个重要研究领域。古老的多金属氧酸盐化学,经历百余年的变化、发展,现已进入了一个崭新的时代:多金属氧酸盐化学的理论研究方面取得了重要的进展,由于X-射线结晶学的硬件和软件及ESR、NMR等表面分析谱学手段的发展和精细的电化学方法的应用,对多酸的溶液、固体及表面化学性质方面有了进一步的认识,金属-氧簇(Metal-Oxygen cluster)、多金属氧酸盐化学(polyoxometalate chemistry)被更多的人们研究和采用的研究;多金属氧酸盐的合成己进入了分子剪裁和组装,从对稳定氧化态物质的合成、研究进入亚稳态和变价化合物及超分子化合物的研究,纳米结构和高聚合度多金属氧酸阴离子、夹心式多金属氧酸多阴离子、链式有机金属多金属氧酸盐及具有空半球结构的多金属氧酸阴离子的研究正方兴未艾;多金属氧酸盐化学的应用除催化领域外,现己跻身于材料科学和药物化学等领域,它的发展无疑会为人类提供一类新的、具有光、电、磁功能材料和一系列抗艾滋病、抗肿瘤、抗病毒药物。多金属氧酸盐是一类金属-氧簇化合物,一般呈笼型结构,是一类优良的受体分子,它可以与无机、有机分子、离子等结合成超分子化合物,因而很适合作为上述有机.无机复合材料中的无机组分。多金属氧酸盐的有机-无机复合材料是八十年代末,九十年代初国际上刚刚起步的工作,作为一类新型的电。磁、非线性光学材料极具开发性质。本论文以多金属氧酸盐的分子材料的制备这一前沿领域为主要研究方向,具体地研究了多金属氧酸盐的有序的有机/无机复合膜及其相关氧化物薄膜材料的制备,联用多种技术(特别是电化学技术,也包括扫描探针显微镜等在内的表面分析技术)系统深入地表征了下述薄膜材料。1.多金属氧酸阴离子一硫醇自组膜(SAM)复合膜的制备与表征。2.多金属氧酸盐LB膜的制备与表征。3.三维有序的硅钨阴离子的单层膜和多层膜的制备与表征。4.非化学计量混合价态氧化钼膜(VI,V)的制备与表征。5.过渡金属取代的多金属氧酸盐的电化学和电催化性质。
Resumo:
A carbon-supported palladium catalyst modified by non-metal phosphorus(PdP/C) has been developed as an oxygen reduction catalyst for direct methanol fuel cells.The PdP/C catalyst was prepared by the sodium hypophosphite reduction method. The as-prepared Pd nanoparticles have a narrow size distribution with an average diameter of 2 nm. Energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results indicate that P enters into the crystal lattice of Pd and forms an alloy.
Resumo:
Tm3+/Yb3+-codoped heavy metal oxide-halide glasses have been synthesized by conventional melting and quenching method. Structural properties were obtained based on the Raman spectra, indicating that halide ion has an important influence on the phonon density and maximum phonon energy of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. With increasing halide content, the up-conversion luminescence intensity and blue luminescence lifetimes of Tm3+ ion increase notably. Our results show that with the substitution of halide ion for oxygen ion, the decrease of phonon density and maximum phonon energy of host glasses both contribute to the enhanced up-conversion emissions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we report on the multicolor luminescence in oxygen-deficient Tb3+-doped calcium aluminogermanate glasses. A simple method was proposed to control oxygen-deficient defects in glasses by adding metal Al instead of the corresponding oxide (Al2O3), resulting in efficient blue and red emissions from Tb3+-undoped glasses with 300 and 380 nm excitation wavelengths, respectively. Moreover, in Tb3+-doped oxygen-deficient glasses, bright three-color (sky-blue, green or yellow, and red) luminescence was observed with 300, 380, and 395 nm excitation wavelengths, respectively. These glasses are useful for the fabrication of white light-emitting diode (LED) lighting.
Resumo:
Using first-principles methods, we systematically study the mechanism of defect formation and electronic structures for 3d transition-metal impurities (V, Cr, Mn, Fe, and Co) doped in silicon nanowires. We find that the formation energies of 3d transition-metal impurities with electrons or holes at the defect levels always increase as the diameters of silicon nanowires decrease, which suggests that self-purification, i.e., the difficulty of doping in silicon nanowires, should be an intrinsic effect. The calculated results show that the defect formation energies of Mn and Fe impurities are lower than those of V, Cr, and Co impurities in silicon nanowires. It indicates that Mn and Fe can easily occupy substitutional site in the interior of silicon nanowires. Moreover, they have larger localized moments, which means that they are good candidates for Si-based dilute magnetic semiconductor nanowires. The doping of Mn and Fe atom in silicon nanowires introduces a pair of energy levels with t(2) symmetry. One of which is dominated by 3d electrons of Mn or Fe, and the other by neighboring dangling bonds of Si vacancies. In addition, a set of nonbonding states localized on the transition-metal atom with e symmetry is also introduced. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000445]
Resumo:
ZnMgO hexagonal-nanotowers/films grown on m-plane sapphire substrates were successfully synthesized using a vertical low-pressure metal organic chemical vapour deposition system. The structural and optical properties of the as-obtained products were characterized using various techniques. They were grown along the non-polar [1 0 (1) over bar 0] direction and possessed wurtzite structure. The ZnMgO hexagonal-nanotowers were about 200 nm in diameter at the bottom and 120 nm in length. Photoluminescence and Raman spectra show that the products have good crystal quality with few oxygen vacancies. With Mg incorporation, multiple-phonon scattering becomes weak and broad, and the intensities of all observed vibrational modes decrease. The ultraviolet near band edge emission shows a clear blueshift (as much as 100 meV) and broadening compared with that of pure ZnO products.
Resumo:
Employing the metal-organic chemical vapour deposition (MOCVD) technique, we prepare ZnO samples with different morphologies from the film to nanorods through conveniently changing the bubbled diethylzinc flux (BDF) and the carrier gas flux of oxygen (OCGF). The scanning electron microscope images indicate that small BDF and OCGF induce two-dimensional growth while the large ones avail quasi-one-dimensional growth. X-ray diffraction (XRD) and Raman scattering analyses show that all of the morphology-dependent ZnO samples are of high crystal quality with a c-axis orientation. From the precise shifts of the 2 theta. locations of ZnO (002) face in the XRD patterns and the E-2(high) locations in the Raman spectra, we deduce that the compressive stress forms in the ZnO samples and is strengthened with the increasing BDF and OCGF. Photoluminescence spectroscopy results show all the samples have a sharp ultraviolet luminescent band without any defects-related emission. Upon the experiments a possible growth mechanism is proposed.
Resumo:
Well-aligned Zn1-xMgxO nanorods and film with Mg-content x from 0 to 0.051 have been successfully synthesized by metal organic chemical vapor deposition (MOCVD) without any catalysts. The characterization results showed that the diameters and lengths of the nanorods were in the range of 20-80 nm and 330-360 nm, which possessed wurtzite structure with a c-axis growth direction. As the increase of Mg precursor flows into the growth chamber, the morphology of Zn1-xMgxO evolves from nanorods to a film with scale-like surface and the height of the nanorods and the film was almost identical, it is suggested that the growth rate along the c-axis was hardly changed while the growth of six equivalent facets of the type {1 0 (1) over bar 0} of the Zn1-xMgxO has been improved. Photoluminescence and Raman spectra show that the products have a good crystal quality with few oxygen vacancies. With the Mg incorporation, multiple-phonon scattering become weak and broad, and the intensities of all observed vibrational modes decrease. And the ultraviolet near-band-edge emission shows a clear blueshift (x=0.051, as much as 90 meV) and slightly broadening compared with that of pure ZnO nanorods. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In our work, nitrogen ions were implanted into separation-by-implantation-of-oxygen (SIMOX) wafers to improve the radiation hardness of the SIMOX material. The experiments of secondary ion mass spectroscopy (SIMS) analysis showed that some nitrogen ions were distributed in the buried oxide layers and some others were collected at the Si/SiO2 interface after annealing. The results of electron paramagnetic resonance (EPR) suggested the density of the defects in the nitrided samples changed with different nitrogen ion implantation energies. Semiconductor-insulator-semiconductor (SIS) capacitors were made on the materials, and capacitance-voltage (C-V) measurements were carried out to confirm the results. The super total dose radiation tolerance of the materials was verified by the small increase of the drain leakage current of the metal-oxide-semiconductor field effect transistor with n-channel (NMOSFETs) fabricated on the materials before and after total dose irradiation. The optimum implantation energy was also determined.
Resumo:
Quality ZnO films were successfully grown on Si(100) substrate by low-pressure metal organic chemical vapor deposition method in temperature range of 300-500 degrees C using DEZn and N2O as precursor and oxygen source respectively. The crystal structure, optical properties and surface morphology of ZnO films were characterized by X-ray diffraction, optical refection and atomic force microscopy technologies. It was demonstrated that the crystalline structure and surface morphology of ZnO films strongly depend on the growth temperature.
Resumo:
Chemical-looping reforming (CLR) is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. It involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from combustion air to the fuel. Composite oxygen carriers of cerium oxide added with Fe, Cu, and Mn oxides were prepared by co-precipitation and investigated in a thermogravimetric analyzer and a fixed-bed reactor using methane as fuel and air as oxidizing gas. It was revealed that the addition of transition-metal oxides into cerium oxide can improve the reactivity of the Ce-based oxygen carrier. The three kinds of mixed oxides showed high CO and H-2 selectivity at above 800 degrees C. As for the Ce-Fe-O oxygen carrier, methane was converted to synthesis gas at a H-2/CO molar ratio close to 2:1 at a temperature of 800-900 degrees C; however, the methane thermolysis reaction was found on Ce-Cu-O and Ce-Mn-O oxygen carriers at 850-900 degrees C. Among the three kinds of oxygen carriers, Ce-Fe-O presented the best performance for methane CLR. On Ce-Fe-O oxygen carriers, the CO and H-2 selectivity decreased as the Fe content increased in the carrier particles. An optimal range of the Ce/Fe molar ratio is Ce/Fe > 1 for Ce-Fe-O oxygen carriers. Scanning electron microscopy (SEM) analysis revealed that the microstructure of the Ce-Fe-O oxides was not dramatically changed before and after 20 cyclic reactions. A small amount of Fe3C was found in the reacted Ce-Fe-O oxides by X-ray diffraction (XRD) analysis.
Resumo:
The high-resolution spectral measurements for new local vibrational modes near 714 cm-1 due to the oxygen defect in semi-insulating GaAs are analyzed on the basis of a model calculation by self-consistent bond orbital approach. Two charge states of oxygen atom with 1 and 2 extra electrons are assigned to be responsible for these local modes. The observed frequencies are explained by the properties of Ga-O-1 and Ga-O-2 bonds and the calculated cohesive energy indicates that the O-2 state is stable. The results are in good agreement with the kinetic analysis.