117 resultados para Mediating factor
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 play important roles in mitogenesis and chemotaxis of endothelial cells. In normal human skin, VEGF is expressed and secreted by epidermal keratinocytes. Emerging data suggest that keratin
Resumo:
The anti-lipopolysaccharide factor CALF) is a small basic protein that can bind and neutralize lipopolysaccharide (LPS), mediating degranulation and activation of an intracellular coagulation cascade. In the present study, cDNA of the second Eriocheir sinensis ALF (designated as EsALF-2) was cloned and the full-length cDNA of EsALF-2 was of 724 bp, consisting of an open reading frame (ORF) of 363 bp encoding a polypeptide of 120 amino acids. The deduced amino acid of EsALF-2 shared 82% similarity with EsALF-1 from E. sinensis and about 53-65% similarity with ALFs from other crustaceans. The potential tertiary structures of EsALF-1 and EsALF-2 contained two highly conserved-cysteine residues to define the LPS binding site, but the N-terminal of EsALF-1 formed a single additional alpha-helix compared to EsALF-2, implying that EsALF-1 and EsALF-2 might represent different biological functions in E. sinensis. The mRNA transcript of EsALF-2 was detected in all examined tissues of healthy crabs, including haemocytes, hepatopancreas, gill, muscle, heart and gonad, which suggested that EsALF-2 could be a multifunctional molecule for the host immune defense responses and thereby provided systemic protection against pathogens. The mRNA expression of EsALF-2 was up-regulated after Listonelln anguillarum and Pichia pastoris challenge and the recombinant protein of EsALF-2 showed antimicrobial activity against L. anguillarum and P. pastoris. indicating that EsALF-2 was involved in the immune defense responses in Chinese mitten crab against L. anguillarum and P. pastoris. These results together indicated that there were abundant and diverse ALFs in E. sinensis with various biological functions and these ALFs would provide candidate promising therapeutic or prophylactic agents in health management and diseases control of crab aquaculture. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.
Resumo:
Elastodynamic stress intensity factor histories of an unbounded solid containing a semi-infinite plane crack that propagates at a constant velocity under 3-D time-independent combined mode loading are considered. The fundamental solution, which is the response of point loading, is obtained. Then, stress intensity factor histories of a general loading system are written out in terms of superposition integrals. The methods used here are the Laplace transform methods in conjunction with the Wiener-Hopf technique.
Resumo:
The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.
Resumo:
Based on the Mach-Zehnder effect between the core mode and the cladding modes, the interference fringes are formed by a pair of cascaded long-period fiber gratings (CLPFGs). Theoretical analyses show that the spectral spacing and the wavelength of these fringes are functions of the waveguide dispersion factor gamma, which is a characterizing parameter to LPFG and with theoretical and applicational significance. By measuring the characteristics of the transmission spectra of CLPFGs, the absolute value of gamma can be obtained. At the same time, the thermo-optic coefficient of effective refractive index difference between core and cladding modes, p, can also be obtained by measured the temperature sensitivity of these fringes. In the experiments, \gamma\ and mu were measured by this method to be 0.874 and 4.08 x 10(-5) degreesC(-1), respectively, for LPFGs with period of 450 mum and with a HE14 resonant peak at 1554 nm. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
It is shown that the locus of the f' + if '' plot in the complex plane, f' being determined from measured f '' by using the dispersion relation, looks like a semicircle very near the absorption edge of Ge. The semicircular locus is derived from a quantum theory of X-ray resonant scattering when there is a sharp isolated peak in f '' just above the K-absorption edge. Using the semicircular behavior, an approach is proposed to determine the anomalous scattering factors in a crystal by fitting known calculated values based on an isolated-atom model to a semicircular focus. The determined anomalous scattering factors f' show excellent agreement with the measured values just below the absorption edge. In addition, the phase determination of a crystal structure factor has been considered by using the semicircular behavior.
Resumo:
The far-field intensity distribution of hollow Gaussian beams was investigated based on scalar diffraction theory. An analytical expression of the M-2 factor of the beams was derived on the basis of the second-order moments. Moreover, numerical examples to illustrate our analytical results are given. (c) 2005 Optical Society of America.
Resumo:
We investigated M-2 factor and far-field distribution of beams generated by Gaussian mirror resonator. And we found usable analytical expressions of the M2 factor and the far-field distribution intensity with respect to variation of diffraction parameters. Particular attention was paid to the parameters such as mirror spot size and reflectance of the Gaussian mirror. (c) 2006 Elsevier GrnbH. All rights reserved.