1 resultado para Mechatronic
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
近年来,机器人、数控机床等机电系统在国民生产及生活中得到了越来越广泛的应用,与之相对应的,机电系统的控制无形中也逐渐成为机电一体化和自动控制的研究热点。另一方面,非线性特性是任何实际系统普遍存在的现象,在机电系统中尤其如此。本文从控制器设计的角度研究非线性机电系统的两个典型问题:系统闭环优化性能的改善;控制器鲁棒性的增强。这也是当前自动控制研究领域的两个重点及热点问题。 最优性是闭环系统性能最实用的评价指标之一。最优控制及预测控制是试图实现控制性能优化的两种典型方法。但前者因本身不构成闭环而严重缺乏鲁棒性,在实践中很少能得到应用;后者作为前者理念的推广,在实践中已经得到了较为广泛地应用,并取得了不错的效果,但在实现某种程度的鲁棒性时依然面临困难。除最优性外,闭环控制的鲁棒性也是非线性系统控制中亟待解决的问题之一,这是由于实际的系统几乎不可能避免模型不确定性。 现有的非线性预测控制及鲁棒控制方法无论在方法的广泛适用性还是在可行性方面都还远非完备。据此,本论文沿鲁棒性和最优性两条主线,以典型的机电系统(无人直升机模型)为研究对象,分别进行了深入的理论和实验研究,并最终形成一种同时兼顾最优性和鲁棒性的控制器设计框架,以期在一定程度上解决现有方法中存在的问题,并为以后更深入的研究工作奠定基础。 鉴于此,本论文分别针对鲁棒控制和预测控制展开讨论,其中前者主要解决基于加速度反馈实现鲁棒控制的方法,内容为第二章和第三章;后者则旨在解决基于控制Lyapunov函数方法实现实时稳定预测控制,主要内容为第四章和第五章。本论文的具体内容安排如下: 论文的第一章综述了控制理论在鲁棒性与最优性两个方向的发展概况(主要针对非线性系统),包括其发展历史,现存方法的局限性等。从而引出本论文的研究内容及研究意义。 第二章,研究了基于加速度反馈的控制器鲁棒增强方法。在深入分析常规加速度反馈控制方法的基础上,指出其存在的三方面主要问题:代数环问题;高增益实现问题和不能用于欠驱动非线性系统等。并针对两种典型的非线性系统(以无人直升机模型为代表)将新的加速度反馈控制方法与H∞控制相结合,得到了一种能够保证输入输出稳定的扰动抑制方法。大量的仿真结果验证了方法的可行性及有效性。 随后,在第三章研究了加速度的估计问题。基于加速度反馈的鲁棒控制器增强技术得以实现的前提是加速度信号的获取,本章在分析了现有加速度估计方法存在严重的滞后问题的同时,提出了将Kalman滤波方法同牛顿预测方法相结合以改善相位滞后问题的方法。实验及仿真结果验证了方法的有效性。 第四章提出了基于控制Lyapunov函数的稳定闭环控制器设计框架。本章利用集值分析理论研究了控制Lyapunov函数具有的一些性质及其在控制器设计中的应用。随后,介绍了两种典型的根据控制Lyapunov函数设计控制器的方法。接着,将引导函数的概念引入到Freeman的逐点最小范数控制方法中,形成了一种新的利用控制Lyapunov函数设计非线性控制器的方法—广义逐点最小范数控制器。最后指出,在这种框架下,鲁棒控制器设计也可以实现,并针对三种不同的不确定性系统给出了鲁棒广义逐点最小范数控制器设计方法。 最后,在第五章,将前面提出的广义逐点最小范数控制引入到非线性预测控制中去,以期利用控制Lyapunov函数保证闭环稳定性,同时利用控制器中的参数化变量作为优化对象以减轻预测控制算法的计算负担,从而达到实时稳定预测控制的目的。另外,在这一章我们还在第二章和第四章的基础上,结合加速度反馈思想和鲁棒控制Lyapunov函数的概念,提出了一种用于扰动抑制的鲁棒实时预测控制算法。同样,仿真实验验证了方法的有效性和可行性。