43 resultados para Mechanical damage

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In experiments, we have found an abnormal relationship between probability of laser induced damage and number density of surface inclusion. From results of X-ray diffraction (XRD) and laser induced damage, we have drawn a conclusion that bulk inclusion plays a key role in damage process. Combining thermo-mechanical damage process and statistics of inclusion density distribution, we have deduced an equation which reflects the relationship between probability of laser induced damage, number density of inclusion, power density of laser pulse, and thickness of films. This model reveals that relationship between critical sizes of the dangerous inclusions (dangerous inclusions refer to the inclusions which can initialize film damage), embedded depth of inclusions, thermal diffusion length and tensile strength of films. This model develops the former work which is the statistics about surface inclusion. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new model for analyzing the laser-induced damage process is provided. In many damage pits, the melted residue can been found. This is evidence of the phase change of materials. Therefore the phase change of materials is incorporated into the mechanical damage mechanism of films. Three sequential stages are discussed: no phase change, liquid phase change, and gas phase change. To study the damage mechanism and process, two kinds of stress have been considered: thermal stress and deformation stress. The former is caused by the temperature gradient and the latter is caused by high-pressure drive deformation. The theory described can determine the size of the damage pit. (c) 2006 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zirconium dioxide (ZrO2) thin films were deposited on BK7 glass substrates by the electron beam evaporation method. A continuous wave CO2 laser was used to anneal the ZrO2 thin films to investigate whether beneficial changes could be produced. After annealing at different laser scanning speeds by CO2 laser, weak absorption of the coatings was measured by the surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was also determined. It was found that the weak absorption decreased first, while the laser scanning speed is below some value, then increased. The LIDT of the ZrO2 coatings decreased greatly when the laser scanning speeds were below some value. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was defect-initiated both for annealed and as-deposited samples. The influences of post-deposition CO2 laser annealing on the structural and mechanical properties of the films have also been investigated by X-ray diffraction and ZYGO interferometer. It was found that the microstructure of the ZrO2 films did not change. The residual stress in ZrO2 films showed a tendency from tensile to compressive after CO, laser annealing, and the variation quantity of the residual stress increased with decreasing laser scanning speed. The residual stress may be mitigated to some extent at proper treatment parameters. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damage not only degrades the mechanical properties of explosives, but also influences the shock sensitivity, combustion and even detonation behavior of explosives. The study of impact damage is crucial in the vulnerability evaluation of explosives. A long-pulse low-velocity gas gun with a gas buffer was developed and used to induce impact damage in a hot pressed plastic bonded explosive. Various methods were used to detect and characterize the impact damage of the explosive. The microstructure was examined by use of polarized light microscopy. Fractal analysis of the micrographs was conducted by use of box counting method. The correlation between the fractal dimensions and microstructures was analyzed. Ultrasonic testing was conducted using a pulse through-transmission method to obtain the ultrasonic velocity and ultrasonic attenuation. Spectra analyses were carried out for recorded ultrasonic signals using fast Fourier transform. The correlations between the impact damage and ultrasonic parameters including ultrasonic velocities and attenuation coefficients were also analyzed. To quantitatively assess the impact induced explosive crystal fractures, particle size distribution analyses of explosive crystals were conducted by using a thorough etching technique, in which the explosives samples were soaked in a solution for enough time that the binder was totally removed. Impact induces a large extent of explosive crystal fractures and a large number of microcracks. The ultrasonic velocity decreases and attenuation coefficients increase with the presence of impact damage. Both ultrasonic parameters and fractal dimension can be used to quantitatively assess the impact damage of plastic bonded explosives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to assess the safety of high-energy solid propellants, the effects of damage on deflagration-to-detonation transition (DDT) in a nitrate ester plasticized polyether (NEPE) propellant, is investigated. A comparison of DDT in the original and impacted propellants was studied in steel tubes with synchronous optoelectronic triodes and strain gauges. The experimental results indicate that the microstructural damage in the propellant enhances its transition rate from deflagration to detonation and causes its danger increase. It is suggested that the mechanical properties of the propellant should be improved to restrain its damage so that the likelihood of DDT might be reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiscale coupling attracts broad interests from mechanics, physics and chemistry to biology. The diversity and coupling of physics at different scales are two essential features of multiscale problems in far-from-equilibrium systems. The two features present fundamental difficulties and are great challenges to multiscale modeling and simulation. The theory of dynamical system and statistical mechanics provide fundamental tools for the multiscale coupling problems. The paper presents some closed multiscale formulations, e.g., the mapping closure approximation, multiscale large-eddy simulation and statistical mesoscopic damage mechanics, for two typical multiscale coupling problems in mechanics, that is, turbulence in fluids and failure in solids. It is pointed that developing a tractable, closed nonequilibrium statistical theory may be an effective approach to deal with the multiscale coupling problems. Some common characteristics of the statistical theory are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cracking of ceramics with tetragonal perovskite grain structure is known to appear at different sites and scale level. The multiscale character of damage depends on the combined effects of electromechanical coupling, prevailing physical parameters and boundary conditions. These detail features are exhibited by application of the energy density criterion with judicious use of the mode I asymptotic and full field solution in the range of r/a = 10(-4) to 10(-2) where r and a are, respectively, the distance to the crack tip and half crack length. Very close to the stationary crack tip, bifurcation is predicted resembling the dislocation emission behavior invoked in the molecular dynamics model. At the macroscopic scale, crack growth is predicted to occur straight ahead with two yield zones to the sides. A multiscale feature of crack tip damage is provided for the first time. Numerical values of the relative distances and bifurcation angles are reported for the PZT-4 ceramic subjected to different electric field to applied stress ratio and boundary conditions that consist of the specification of electric field/mechanical stress, electric displacement/mechanical strain, and mixed conditions. To be emphasized is that the multiscale character of damage in piezoceramics does not appear in general. It occurs only for specific combinations of the external and internal field parameters, elastic/piezoelectric/dielectric constants and specified boundary conditions. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical behavior of dual phase steel plates is affected by internal stresses created during martensite transformation. Analytical modelling of this effect is made by considering a unit cell made of martensite inclusion in a ferrite matrix. A large strain finite element analysis is then performed to obtain the plane stress deformation state. Displayed numerically are the development of the plastic zone and distribution of local state of stress and strain. Studied also are the shape configuration of the martensite (hard-phase) that influences the interfacial condition as related to stress transmission and damage. Internal stresses are found to enhance the global flow stress after yield initiation in the ferrite matrix. Good agreement is obtained between the analytical results and experimental observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initiation of laser damage within optical coatings can be better understood by thermal-mechanical modeling of coating defects. The result of this modeling shows that a high-temperature rise and thermal stress can be seen just inside the nodular defect compared to surrounding coating layers. The temperature rise and thermal stress tend to increase with seed diameter. Shallower seed tend to cause higher temperature rise and greater thermal stress. There is a critical seed depth at which thermal stress is largest. The composition of the seed resulting from different coating-material emission during evaporation can affect the temperature rise and thermal stress distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To simulate the deformation and the fracture of gradual multi-fiber-reinforced matrix composites, a numerical simulation method for the mesoscopic mechanical behaviors was developed on the basis of the finite element and the Monte Carlo methods. The results indicate that the strength of a composite increases if the variability of statistical fiber strengths is decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

结合纳米硬度技术测量各类薄膜和块体材料表层的纳米压痕硬度、弹性模量、断裂韧性、膜厚、微结构的弯曲变形,采用纳米划痕硬度技术测量各类薄膜和块体材料的粗糙度、临界附着力、摩擦系数、划痕横剖面.纳米硬度计是检测材料表层微米乃至几十纳米力学性能的先进仪器,可广泛应用于表面工程中的质量检测.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

对微孔泡沫塑料力学行为的研究文献进行了综述,简单介绍了微孔泡沫塑料的制备和表征方法,重点介绍了微孔泡沫塑料力学性能的研究工作,其中也包括作者近期在该领域的一些工作。这些工作主要讨论了微孔泡沫塑料的压缩、拉伸、冲击、疲劳和黏弹性效应。最后:给出了对该领域工作的一些讨论和展望。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A closed, trans-scale formulation of damage evolution based on the statistical microdamage mechanics is summarized in this paper. The dynamic function of damage bridges the mesoscopic and macroscopic evolution of damage. The spallation in an aluminium plate is studied with this formulation. It is found that the damage evolution is governed by several dimensionless parameters, i.e., imposed Deborah numbers De* and De, Mach number M and damage number S. In particular, the most critical mode of the macroscopic damage evolution, i.e., the damage localization, is deter-mined by Deborah number De+. Deborah number De* reflects the coupling and competition between the macroscopic loading and the microdamage growth. Therefore, our results reveal the multi-scale nature of spallation. In fact, the damage localization results from the nonlinearity of the microdamage growth. In addition, the dependence of the damage rate on imposed Deborah numbers De* and De, Mach number M and damage number S is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. Although the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. Furthermore, the same expression holds true for both fast loading and unloading. These results should provide a sound basis for using the relationship for determining properties of viscoelastic solids using indentation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For metal-matrix composites (MMCs), interfacial debonding between the ductile matrix and the reinforcing hard inclusions is an important failure mode. A fundamental approach to improving the properties of MMCs is to optimize their microstructure to achieve maximum strength and toughness. Here, we investigate the flow stress of a MMC with a nanoscale microstructure similar to that of bone. Such a 'biomorphous' MMC would be made of staggered hard and slender nanoparticles embedded in a ductile matrix. We show that the large aspect ratio and the nanometer size of inclusions in the biomorphous MMC lead to significantly improved properties with increased tolerance of interfacial damage. In this case, the partially debonded inclusions continue to carry mechanical load transferred via longitudinal shearing of the matrix material between neighboring inclusions. The larger the inclusion aspect ratio, the larger is the flow stress and work hardening rate for the composite. Increasing the volume concentration of inclusion also makes the biomorphous MMC more tolerant of interfacial damage.