150 resultados para Measurement of populism

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal properties of a micro-electromechanical system sensor were analysed by a novel digital moire method. A double-layer micro-cantilever sensor (60 mu m long, 10 mu m width and 2 mu dm thick) was prepared by focused ion beam milling. A grating with frequency of 5000 lines mm- I was etched on the cantilever. The sensor was placed into a scanning electron microscope system with a high temperature device. The observation and recording of the thermal deformation of the grating were realised in real-time as the temperature rose from room temperature to 300 degrees C at intervals of 50 degrees C. Digital moire was generated by interference of the deformed grating and a digital virtual grating. The thermal properties including strain distribution of the sensor and the linear expansion coefficient of polysilicon were accurately measured by the phase-shifted moire patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present density measurements from the application of interferometry and Fourier transform fringe analysis to the problem of nonstationary shock wave reflection over a semicircular cylinder and compare our experimental measurements to theoretical results from a CFD simulation of the same problem. The experimental results demonstrate our ability to resolve detailed structure in this complex shock wave reflection problem, allowing visualization of multiple shocks in the vicinity of the triple point, plus visualization of the shear layer and an associated vortical structure. Comparison between CFD and experiment show significant discrepancies with experiment producing a double Mach Reflection when CFD predicts a transitional Mach reflection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

微电子机械系统(MEMS)技术的迅速崛起,推动了所用材料微尺度力学性能测试技术的发展.首先按作用方式将实验分成压痕/划痕、弯曲、拉伸、扭转四大类,系统介绍检测MEMS材料微尺度力学性能的微型试样、测试方法及其实验结果.测试材料主要有硅、氧化硅、氮化硅和一些金属.实验结果主要包括基本的力学性能参数如弹性模量、残余应力、屈服强度、断裂强度和疲劳强度等.最后,简要分析了未来的发展需求.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbidity measurement for the absolute coagulation rate constant of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor to derive the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed in the aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion about the physical insight of using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the calculated data of the optical factor by the T-matrix method for a range of particle radii and incident light wavelengths are listed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermally induced recovery of nanoindents in a CUAINi single crystal shape memory alloy was studied by nanoindentation in conjunction with a heating stage. Nanoindents formed by a Berkovich indenter at room temperature were heated to 40, 70 and 100 degrees C. Partial recovery was observed for the nanoindents. The recovery ratio depended on the heating temperature. Indentation of CuAlNi can induce inelastic deformation via dislocation motion and a stress-induced matensitic transformation. The percentages of dislocation-induced plastic strain would affect the thermal deformation of CuAlNi, because the induced dislocations could stabilize stress-induced martensite plates even when the temperature above austenite finish temperature, A(f). When the applied indentation load is low (less than 10,000 mu N), the shape recovery strain is predominant, compared with the dislocation-induced plastic strain. Therefore, the degree of indent recovery in the depth direction, delta(D), is high (about 0.7-0.8 at 100 degrees C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fracture toughness and interfacial adhesion properties of a coating on its substrate are considered to be crucial intrinsic parameters determining performance and reliability of coating-substrate system. In this work, the fracture toughness and interfacial shear strength of a hard and brittle Cr coating on a normal medium carbon steel substrate were investigated by means of a tensile test. The normal medium carbon steel substrate electroplated with a hard and brittle Cr coating was quasi-statically stretched to induce an array of parallel cracks in the coating. An optical microscope was used to observe the cracking of the coating and the interfacial decohesion between the coating and the substrate during the loading. It was found that the cracking of the coating initiated at critical strain, and then the number of the cracks of the coating per unit axial distance increased with the increase in the tensile strain. At another critical strain, the number of the cracks of the coating became saturated, i.e. the number of cracks per unit axial distance became a constant after this critical strain. Based on the experiment result, the fracture toughness of the brittle coating can be determined using a mechanical model. Interestingly, even when the whole specimen fractured completely under an extreme strain of the substrate, the interfacial decohesion or buckling of the coating on its substrate was completely absent. The test result is different from that appeared in the literature though the identical test method and the brittle coating/ductile metal substrate system are taken. It was found that this difference can be attributed to an important mechanism that the Cr coating on the steel substrate has a good adhesion, and the ultimate interfacial shear strength between the Cr coating and the steel substrate has exceeded the maximum shear flow strength level of the steel substrate. This result also indicates that the maximum shear flow strength level of the ductile steel substrate can be only taken as a lower bound estimate on the ultimate shear strength of the interface. This estimation of the ultimate interfacial shear strength is consistent with the theoretical analysis and prediction presented in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2 pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of direct measurement of temperature in shock-loaded, nonmetallic solids within microseconds using a foil thermocouple of 200 Å thickness has been studied over a range of pressure from 0.5 to 4 GPa. The foil thermocouple and thermopile (200 Å thickness) were designed and used to measure the temperature rise in shock-compressed polymethylmethacrylate (PMMA). The method used to manufacture the gauges is spelled out in detail in this paper. The results agree with calculated PMMA temperatures when the shock pressure is below 2.2 GPa. Above this pressure the measured temperature rise is far higher than the calculated values. This result appears to be very similar to that obtained earlier by Bloomquist and Sheffield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel possibility to determine the temperature, density and velocity simultaneously in gas flows by measuring the average value, amplitude of modulation and phase shift of the photoluminescence excited by a temporally or spatially modulated light source is investigated. Time-dependent equations taking the flow, diffusion, excitation and decay into account are solved analytically. Different experimental arrangements are proposed. Measurements of velocity with two components, and temporal and spatial resolutions in the measurements are investigated. Numerical examples are given for N z with biacetyl as the seed gas. Practical considerations for the measurements and the relation between this method and some existing methods of lifetime measurement are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-voltage measuring system, employing a quartz Pockels cell, is described. The system is capable of a large voltage range, a fast response time (ns), a high SNR, an excellent accuracy, a good linearity, and high reliability. Furthermore, the Pockels cell can be isolated from ground potential. Equally important, the detection system can be isolated from sources of electrical noise present in, for example, fast discharges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the shock velocity range of 7~9km/s, the variations of electron density behind strong normal shock waves are measured in a low-density shock tube by using the Langmuir electrostatic probe technique. The electron temperature, calculated based on Park’s three-temperature model, is used in interpreting the probe current data. The peak electron densities determined in the present experiment are shown to be in a good agreement with those predicted by Lin’s calculation. The experimentally obtained ratios of the characteristic ionization distance to the mean free path of freestream ahead of the shock wave are found to be in a good agreement with the existing experiments and Park’s calculation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital Speckle Correlation Method (DSCM) is a useful tool for whole field deformation measurement, and has been applied to analyze the deformation field of rock materials in recent years. In this paper, a Geo-DSCM system is designed and used to analyse the more complicated problems of rock mechanics, such as damage evolution and failure procedure. A weighted correlation equation is proposed to improve the accuracy of displacement measurement on a heterogeneous deformation field. In addition, a data acquisition system is described that can synchronize with the test machine and can capture speckle image at various speeds during experiment. For verification of the Geo-DSCM system, the failure procedure of a borehole rock structure is inspected and the evolution of the deformation localization is analysed. It is shown that the deformation localization generally initializes at the vulnerable area of the rock structure but may develop in a very complicated way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we measured 14 horizontal velocity profiles along the vertical direction of a rectangular microchannel with aspect ratio alpha = h/w = 0.35 (h is the height of the channel and w is the width of the channel) using microPIV at Re = 1.8 and 3.6. The experimental velocity profiles are compared with the full 3D theoretical solution, and also with a Poiseuille parabolic profile. It is shown that the experimental velocity profiles in the horizontal and vertical planes are in agreement with the theoretical profiles, except for the planes close to the wall. The discrepancies between the experimental data and 3D theoretical results in the center vertical plane are less than 3.6%. But the deviations between experimental data and Poiseuille's results approaches 5%. It indicates that 2D Poiseuille profile is no longer a perfect theoretical approximation since a = 0.35. The experiments also reveal that, very near the hydrophilic wall (z = 0.5-1 mu m), the measured velocities are significantly larger than the theoretical velocity based on the no-slip assumption. A proper discussion on some physical effects influencing the near wall velocity measurement is given.