23 resultados para Maximum de vraisemblance

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell-Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an experimental and theoretical study of maximum modal gain of p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers. The maximum modal gain of the QD laser with five stacks of QDs is as high as 17.5 cm(-1) which is the same as that of the undoped laser with identical structures. The expression of the maximum modal gain is derived and it is indicated that p-doping has no effect to the maximum modal gain. We theoretically calculated the maximum modal gain of the QD lasers and the result is in a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial to achieving a greater maximum modal gain that leads to lower threshold current density and higher differential modal gain, which is good for the application of p-doped 1.3 mu m InAs/GaAs QD lasers in optical communications systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the equilibrium and nonequilibrium electronic transports through a double quantum dot coupled to leads in a symmetrical parallel configuration in the presence of both the inter- and the intradot Coulomb interactions. The influences of the interdot interaction and the difference between dot levels on the local density of states (LDOS) and the differential conductance are paid special attention. We find an interesting zero-bias maximum of the differential conductance induced by the interdot interaction, which can be interpreted in terms of the LDOS of the two dots. Due to the presence of the interdot interaction, the LDOS peaks around the dot levels epsilon(i) are split, and as a result, the most active energy level which supports the transport is shifted near to the Fermi level of the leads in the equilibrium situation. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries(1,2) and other obstacles(3,4). For nano-structured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle(5-9), because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals(10,11) in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies(12,13) did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.