17 resultados para Mathematics -- Study and teaching (Higher) -- Peru
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The Raman back scattering/channeling technique was used to analyze the damage recovery at different annealing temperatures and to determine the lattice location of the Er-implanted GaN samples. A better damage recovery was observed with increasing annealing temperature below 1000degreesC, but a complete recovery of the implantation damage cannot be achieved. For a sample annealed for at 900degreesC 30 min the Er and Ga angular scans across the <0001> axis was measured indicating that about 76% of Er ions occupies substitutional sites. Moreover, the photoluminscence (PL) properties of Er-implanted GaN thin films have been also studied. The experimental results indicate that those samples annealed at a higher temperature below 1000degreesC had a stronger 1539nm PL intensity. The thermal quenching of PL intensity for samples annealed at 900degreesC measured at temperatures from 15K to 300K is 30%.
Resumo:
Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.
Resumo:
In this paper the Deflagration to Detonation Transition (DDT) process of gaseous H-2-O-2 mixture and Mach reflection of gaseous detonation wave on a wedge have been conducted experimentally. The cellular pattern of DDT process and Mach reflection were obtained from experiments with wedge angle theta = 10(0) similar to 40(0) and initial pressure of gaseous mixture 16kPa similar to 26.7kPa. The 2-D numerical simulations of DDT process and Mach reflection of detonation wave were performed by using the simplified ZND model and improved space-time conservation element and solution element (CE/SE) method. The numerical cellular structures were compared with the cellular patterns of soot track. Compared results were shown that it is satisfactory. The characteristic comparisons on Mach reflection of air shock wave and detonation wave were carried also out and their differences were given.
Resumo:
We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell-Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.
Resumo:
Using bioinformatics approach, the genome locus containing interleukin (IL)-22, IL-26, and interferon gamma (IFN-gamma) genes has been identified in the amphibian, Xenopus tropicalis. Like that in other vertebrates such as fish, birds, and mammals, the Xenopus IL-22, IL-26, and IFN-gamma are clustered in the same chromosome and the adjacent genes are conserved. The genomic structures of the Xenopus IL-22, IL-26, and IFN-gamma gene were identical to that of their mammalian counterparts. The Xenopus IL-22 and IL-26 genes contained five exons and four introns while the Xenopus IFN-gamma gene consisted of four exons and three introns. The Xenopus IL-22, IL-26, and IFN-gamma share 14.1-41.6%, 14.6-31.2%, and 23.7-36.5% identity to their counterparts in other species, respectively. Reverse-transcription polymerase chain reaction (PCR) and real-time quantitative PCR analyses revealed that the expression of IL-22, IL-26, and IFN-gamma genes was significantly upregulated after simulation with bacterial polyliposaccharide and/or synthetic double-stranded poly(I:C), suggesting these cytokines like those in other vertebrates play an important role in regulating immune response in Xenopus.
Resumo:
As one primary component of Vitamin B-3, nicotinic acid [pyridine 3-carboxylic acid] was synthesized, and calorimetric study and thermal analysis for this compound were performed. The low-temperature heat capacity of nicotinic acid was measured with a precise automated adiabatic calorimeter over the temperature rang from 79 to 368 K. No thermal anomaly or phase transition was observed in this temperature range. A solid-to-solid transition at T-trs = 451.4 K, a solid-to-liquid transition at T-fus = 509.1 K and a thermal decomposition at T-d = 538.8 K were found through the DSC and TG-DTG techniques. The molar enthalpies of these transitions were determined to be Delta(trs)H(m =) 0.81 kJ mol(-1), Delta(fus)H(m) 27.57 kJ mol(-1) and Delta(d)H(m) = 62.38 kJ mol(-1), respectively, by the integrals of the peak areas of the DSC curves.
Resumo:
The heat capacities of berberine sulphate [(C20H18NO4)(2)SO4.3H(2)O] were measured from 80 to 390 K by means of an automated adiabatic calorimeter. Smoothed heat capacities,{H-T-H-298.15} and {S-T-S-298.15} were calculated. The loss of crystalline water started at about 339.3+/-0.2 K, and its peak temperature was 365.8+/-0.6 K. The peak temperature of decomposition for berberine sulphate was at about 391.4+/-0.4 K by DSC curve. TG-DTG analysis of this material was carried out in temperature range from 310 to 970 K. TG and DSC curves show that there is no melting in the whole heating process.
Resumo:
[Ru(bpy)2dppz]2+ electrochemiluminescence (ECL) was studied, and it was used to investigate DNA interaction and develop a label-free ATP aptasensor for the first time. ECL of [Ru(bpy)2dppz]2+ is negligible in aqueous solution, and increases approximately 1000 times when [Ru(bpy)2dppz]2+ intercalates into the nucleic acid structure. The ECL switch behavior of [Ru(bpy)2dppz]2+ is ascribed to the intercalation that shields the phenazine nitrogens from the solvent and results in a luminescent excited state. The ECL switch by DNA was applied to investigate the interaction of [Ru(bpy)2dppz]2+ with herring sperm DNA. The calculated equilibrium constant (K) is 1.35 x 10(6) M(-1), and the calculated binding-site size (s) is 0.88 base pair, which is consistent with the reported values.