23 resultados para Mathematics - Study and teaching (Primary) - Thailand
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
As one primary component of Vitamin B-3, nicotinic acid [pyridine 3-carboxylic acid] was synthesized, and calorimetric study and thermal analysis for this compound were performed. The low-temperature heat capacity of nicotinic acid was measured with a precise automated adiabatic calorimeter over the temperature rang from 79 to 368 K. No thermal anomaly or phase transition was observed in this temperature range. A solid-to-solid transition at T-trs = 451.4 K, a solid-to-liquid transition at T-fus = 509.1 K and a thermal decomposition at T-d = 538.8 K were found through the DSC and TG-DTG techniques. The molar enthalpies of these transitions were determined to be Delta(trs)H(m =) 0.81 kJ mol(-1), Delta(fus)H(m) 27.57 kJ mol(-1) and Delta(d)H(m) = 62.38 kJ mol(-1), respectively, by the integrals of the peak areas of the DSC curves.
Resumo:
Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.
Resumo:
In this paper the Deflagration to Detonation Transition (DDT) process of gaseous H-2-O-2 mixture and Mach reflection of gaseous detonation wave on a wedge have been conducted experimentally. The cellular pattern of DDT process and Mach reflection were obtained from experiments with wedge angle theta = 10(0) similar to 40(0) and initial pressure of gaseous mixture 16kPa similar to 26.7kPa. The 2-D numerical simulations of DDT process and Mach reflection of detonation wave were performed by using the simplified ZND model and improved space-time conservation element and solution element (CE/SE) method. The numerical cellular structures were compared with the cellular patterns of soot track. Compared results were shown that it is satisfactory. The characteristic comparisons on Mach reflection of air shock wave and detonation wave were carried also out and their differences were given.
Resumo:
A novel short neurotoxin, cobrotoxin c (CBT C) was isolated from the venom of monocellate cobra (Naja kaouthia) using a combination of ion-exchange chromatography and FPLC. Its primary structure was determined by Edman degradation. CBT C is composed of 61 amino acid residues. It differs from cobrotoxin b (CBT B) by only two amino acid substitutions, Thr/Ala11 and Arg/Thr56, which are not located on the functionally important regions by sequence similarity. However, the LD50 is 0.08 mg/g to mice, i.e. approximately five-fold higher than for CBT B. Strikingly, a structure-function relationship analysis suggests the existence of a functionally important domain on the outside of Loop III of CBT C. The functionally important basic residues on the outside of Loop III might have a pairwise interaction with alpha subunit, instead of gamma or delta subunits of the nicotinic acetylcholine receptor (nAChR). (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Using bioinformatics approach, the genome locus containing interleukin (IL)-22, IL-26, and interferon gamma (IFN-gamma) genes has been identified in the amphibian, Xenopus tropicalis. Like that in other vertebrates such as fish, birds, and mammals, the Xenopus IL-22, IL-26, and IFN-gamma are clustered in the same chromosome and the adjacent genes are conserved. The genomic structures of the Xenopus IL-22, IL-26, and IFN-gamma gene were identical to that of their mammalian counterparts. The Xenopus IL-22 and IL-26 genes contained five exons and four introns while the Xenopus IFN-gamma gene consisted of four exons and three introns. The Xenopus IL-22, IL-26, and IFN-gamma share 14.1-41.6%, 14.6-31.2%, and 23.7-36.5% identity to their counterparts in other species, respectively. Reverse-transcription polymerase chain reaction (PCR) and real-time quantitative PCR analyses revealed that the expression of IL-22, IL-26, and IFN-gamma genes was significantly upregulated after simulation with bacterial polyliposaccharide and/or synthetic double-stranded poly(I:C), suggesting these cytokines like those in other vertebrates play an important role in regulating immune response in Xenopus.
Resumo:
The Raman back scattering/channeling technique was used to analyze the damage recovery at different annealing temperatures and to determine the lattice location of the Er-implanted GaN samples. A better damage recovery was observed with increasing annealing temperature below 1000degreesC, but a complete recovery of the implantation damage cannot be achieved. For a sample annealed for at 900degreesC 30 min the Er and Ga angular scans across the <0001> axis was measured indicating that about 76% of Er ions occupies substitutional sites. Moreover, the photoluminscence (PL) properties of Er-implanted GaN thin films have been also studied. The experimental results indicate that those samples annealed at a higher temperature below 1000degreesC had a stronger 1539nm PL intensity. The thermal quenching of PL intensity for samples annealed at 900degreesC measured at temperatures from 15K to 300K is 30%.
Resumo:
The heat capacities of berberine sulphate [(C20H18NO4)(2)SO4.3H(2)O] were measured from 80 to 390 K by means of an automated adiabatic calorimeter. Smoothed heat capacities,{H-T-H-298.15} and {S-T-S-298.15} were calculated. The loss of crystalline water started at about 339.3+/-0.2 K, and its peak temperature was 365.8+/-0.6 K. The peak temperature of decomposition for berberine sulphate was at about 391.4+/-0.4 K by DSC curve. TG-DTG analysis of this material was carried out in temperature range from 310 to 970 K. TG and DSC curves show that there is no melting in the whole heating process.