28 resultados para Mass self-communication

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influences of channel layer width, spacer layer width, and delta-doping density on the electron density and its distribution in the AlSb/InAs high electron mobility transistors (HEMTs) have been studied based on the self-consistent calculation of the Schrodinger and Poisson equations with both the strain and nonparabolicity effects being taken into account. The results show that, having little influence on the total two dimensional electron gas (2DEG) concentration in the channel, the HEMT's channel layer width has some influence on the electron mobility, with a channel as narrow as 100-130 angstrom being more beneficial. For the AlSb/InAs HEMT with a Te delta-doped layer, the 2DEG concentration as high as 9.1 X 10(12) cm(-2) can be achieved in the channel by enhancing the delta-doping concentration without the occurrence of the parallel conduction. When utilizing a Si delta-doped InAs layer as the electron-supplying layer of the AlSb/InAs HEMT, the effect of the InAs donor layer thickness is studied on the 2DEG concentration. To obtain a higher 2DEG concentration in the channel, it is necessary to use an InAs donor layer as thin as 4 monolayer. To test the validity of our calculation, we have compared our theoretical results (2DEG concentration and its distribution in different sub-bands of the channel) with the experimental ones done by other groups and show that our theoretical calculation is consistent with the experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electronic structures in the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that (1) electronic energy levels decrease monotonically, and the energy difference between the energy levels increases as the GaAs quantum dot (QD) height increases; (2) strong state mixing is found between the different energy levels as the GaAs QD width changes; (3) the hole energy levels decrease more quickly than those of the electrons as the GaAs QD size increases; (4) in excited states, the hole energy levels are closer to each other than the electron ones; (5) the first heavy- and light-hole transition energies are very close. Our theoretical results agree well with the available experimental data. Our calculated results are useful for the application of the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the single-electron and two-electron vertically assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six energy levels of the single-electron quantum disks and the two lowest energy levels of the two-electron quantum disks in an axial magnetic field. The change of the magnetic field strongly modifies the electronic structures as an effective potential, leading to the splitting of the levels and the crossings between the levels. The effect of the vertical alignment on the electronic structures is discussed. It is demonstrated that the switching of the ground-state spin exists between S=0 and S=1. The energy difference DeltaE between the lowest S=0 and S=1 states is shown as a function of the axial magnetic field. It is also found that the variation of the energy difference between the lowest S=0 and S=1 states in the strong-B S=0 state is fairly linear. Our results provide a possible realization for a qubit to be fabricated by current growth techniques. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study a single electron tunneling through a vertically stacked self-assembled quantum disks structure using a transfer matrix technique in the framework of effective mass approximation. In the disks, the electron is confined both laterally and vertically; we separate the motion in the vertical and lateral directions within the adiabatic approximation and treat the energy levels of the latter as an effective confining potential. The influence of a constant applied electric field is taken into account using an exact Airy-function formalism and the current density is calculated at zero temperature. By increasing the widths of the barriers, we find the peaks of the current density shift toward lower voltage region; meanwhile, they can become even sharper. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum-confined Stark effects in GaAs/AlxGa1-xAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that the electron and hole energy levels and the optical transition energies can cause blueshifts when the electric field is applied along the opposite to the growth direction. Our calculated results are useful for the application of hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices. (c) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the exciton states in vertically stacked self-assembled quantum disks within the effective mass approximation. The energy spectrum of the electron and hole is calculated using the transfer matrix formalism in the adiabatic approximation. The Coulomb interaction between the electron and the hole is treated accurately by the direct diagonalization of the Hamiltonian matrix. The effect of the vertical alignment of the disks on the ground energy of heavy- and light-hole exciton is presented and discussed. The binding energy is discussed in terms of the probability of the ground wave function. The ground energy of heavy- and light-hole excitons as a function of the magnetic field is presented and the effect of the disk size (the radius of disks) on the exciton energy is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the electronic structure of vertically assembled quantum discs in a magnetic field with varying orientation using the effective mass approximation. We calculate the four energy levels of single-electron quantum discs and the two lowest energy levels of two-electron quantum discs in a magnetic field with varying orientation. The change of the magnetic field as an effective potential strongly modifies the electronic structure, leading to splittings of the levels and anticrossings between the levels. The calculated results also demonstrate the switching between the ground states with the total spin S = 0 and 1. The switching induces a qubit controlled by varying the orientation of the magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With a crystal orientation dependent on the etch rate of Si in KOH-based solution, a base-emitter self-aligned large-area multi-linger configuration power SiGe heterojunction bipolar transistor (HBT) device (with an emitter area of about 880 mu m(2)) is fabricated with 2 mu m double-mesa technology. The maximum dc current gain is 226.1. The collector-emitter junction breakdown voltage BVCEO is 10 V and the collector-base junction breakdown voltage BVCBO is 16 V with collector doping concentration of 1 x 10(17) cm(-3) and thickness of 400 nm. The device exhibited a maximum oscillation frequency f(max) of 35.5 GHz and a cut-off frequency f(T) of 24.9 GHz at a dc bias point of I-C = 70 mA and the voltage between collector and emitter is V-CE = 3 V. Load pull measurements in class-A operation of the SiGe HBT are performed at 1.9 GHz with input power ranging from 0 dBm to 21 dBm. A maximum output power of 29.9 dBm (about 977 mW) is obtained at an input power of 18.5 dBm with a gain of 11.47 dB. Compared to a non-self-aligned SiGe HBT with the same heterostructure and process, f(max) and f(T) are improved by about 83.9% and 38.3%, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the electronic structures and binding energy of a hydrogenic impurity in a hierarchically self-assembled GaAs/AlxGa1-xAs quantum dot (QD) in the framework of effective-mass envelope-function theory. The variation of the electronic structures and binding energy with the QD structure parameters and the position of the impurity are studied in detail. We find that (1) acceptor impurity energy levels depend more sensitively on the size of the QD than those of a donor impurity; (2) all impurity energy levels strongly depend on the GaAs quantum well (QW) width; (3) a donor impurity in the QD has only one binding energy level except when the GaAs QW is large; (4) an acceptor impurity in the QD has two binding energy levels, which correspond to heavy- and light-hole quantum states; (5) the binding energy has a maximum value when the impurity is located below the symmetry axis along the growth direction; and (6) the binding energy has a minimum value when the impurity is located at the top corner of the QD. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the exciton states of vertically stacked self-assembled quantum disks within the effective mass approximation. The ground energies of a heavy-hole and a light-hole excitons as functions of the vertical disk separation are presented and discussed. The transition energy of a heavy-hole ground-state exciton is calculated and compared with the experimental data. The binding energies are discussed in terms of the probability of ground wave function. The ground energies of a heavy-hole and a light-hole excitons as functions of the applied axial magnetic field are calculated and the effect of disk size (radius of disks) on exciton energies is discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of the effective-mass and adiabatic approximations, by setting the effective-mass of electron in the quantum disks (QDs) different from that in the potential barrier material, we make some improvements in the calculation of the electronic energy levels of vertically stacked self-assembled InAs QD. Comparing with the results when an empirical value was adopted as the effective-mass of electron of the system, we can see that the higher levels become heightened. Furthermore, the Stark shifts of the system of different methods are compared. The Stark shifts of holes are also studied. The vertical electric field changes the splitting between the symmetric level and the antisymmetric one for the same angular momentum. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated properties of intraband absorption in In-x Ga1-xAs quantum dots (QDs) superlattice. Energy levels in conduction band in QDs were calculated for a cone-shaped quantum dot associated with coupling between QDs in the framework of the effective-mass envelope-function theory. Theoretical results demonstrated that energy levels in conduction band were greatly affected by the vertical coupling between quantum dots, which can be used to modify transition wavelength by adjusting the space layer thickness. Intraband transition is really sensitive to normal incidence and the absorption peak intensity is dependent on the polarization. A satisfying agreement is found between theoretical and experimental values. This result opens up prospects for the fabrication of QDs infrared detectors, which work at atmospheric windows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum-confined Stark effects in InAs/GaAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of perpendicular and parallel electric field. In our calculation, the effect of finite offset, valence band mixing, and strain are all taken into account. The results show that the perpendicular electric field weakly affects the electron ground state and hole energy levels. The energy levels are affected strongly by the parallel electric field. For the electron, the energy difference between the ground state and the first excited state decreases as electric field increases. The optical transition energies have clear redshifts in electric field. The theoretical results agree well with the available experimental data. Our calculated results are useful for the application of quantum dots to photoelectric devices. (C) 2000 American Institute of Physics. [S0021-8979(00)11001-7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pressure behaviour of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots (QDs) has been studied at 15 K in the pressure range of 0-1.3 GPa. The atomic force microscopy image shows that the QDs have a multi-modal distribution in size. Three emission peaks were observed in the photoluminescence (PL) spectra, corresponding to the different QD families. The measured pressure coefficients are 82, 93 and 98 meV GPa(-1) for QDs with average lateral size of 26, 52 and 62 nm, respectively. The pressure coefficient of small QDs is about 17% smaller than that of bulk In0.55Al0.45As An envelope-function calculation was used to analyse the effect of pressure-induced change of barrier height, effective mass and dot size on the pressure coefficients of QDs. The Gamma-X state mixing was also included in the evaluation of the reduction of the pressure coefficients. The results indicate that both the pressure-induced increase of effective mass and Gamma-X mixing respond to the decrease of pressure coefficients, and the Gamma-X mixing is more important for small dots. The calculated Gamma-X interaction potentials are 15 and 10 meV for QDs with lateral size of 26 and 52 nm, respectively. A type-II alignment for the X conduction band is suggested according to the pressure dependence of the PL intensities. The valence-band offset was then estimated as 0.15 +/- 0.02.