141 resultados para Maruanum Ceramics

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many experimental observations have shown that a single domain in a ferroelectric material switches by progressive movement of domain walls, driven by a combination of electric field and stress. The mechanism of the domain switch involves the following steps: initially, the domain has a uniform spontaneous polarization; new domains with the reverse polarization direction nucleate, mainly at the surface, and grow though the crystal thickness; the new domain expands sideways as a new domain continues to form; finally, the domain switch coalesces to complete the polarization reversal. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of the ferroelectric material and used to study the nonlinear constitutive behavior of a ferroelectric body in this paper. The principle of stationary total potential energy is put forward in which the basic unknown quantities are the displacement u(i), electric displacement D-i and volume fraction rho(I) of the domain switching for the variant I. The mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total potential energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion established by Hwang et al. [ 1]. Based on the domain switching criterion, a set of linear algebraic equations for determining the volume fraction rho(I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. If the volume fraction rho(I) of domain switching for each domain is prescribed, the unknown displacement and electric potential can be obtained based on the conventional finite element procedure. It is assumed that a domain switches if the reduction in potential energy exceeds a critical energy barrier. According to the experimental results, the energy barrier will strengthen when the volume fraction of the domain switching increases. The external mechanical and electric loads are increased step by step. The volume fraction rho(I) of domain switching for each element obtained from the last loading step is used as input to the constitutive equations. Then the strain and electric fields are calculated based on the conventional finite element procedure. The finite element analysis is carried out on the specimens subjected to uniaxial coupling stress and electric field. Numerical results and available experimental data are compared and discussed. The present theoretic prediction agrees reasonably with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a negative Poisson ratio is experimentally revealed in the tension deformation of a natural layered ceramic. This effect can increase the volume strain energy per unit volume by 1100% and, simultaneously, decrease the deformation strain energy per unit volume by about 44%, so that it effectively enhances the deformation capacity by about 1 order of magnitude in the tension of the material. The present study also shows that the physical mechanisms producing the effect are attributed to the climbing on one another of the nanostructures in the natural material, which provides a guide to the design of synthetic toughening composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a constitutive law which includes the shear components of transformation plasticity, the asymptotic solutions to near-tip fields of plane-strain mode I steadity propagating cracks in transformed ceramics are obtained for the case of linear isotropic hardening. The stress singularity, the distributions of stresses and velocities at the crack tip are determined for various material parameters. The factors influencing the near-tip fields are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only when the pole is aligned normal to the crack. Switching of the pole axis by 90degrees and 180degrees is examined for possible connection with domain switching. Opposing crack growth behavior can be obtained when the specification of mechanical stress sigma(infinity) and electric field E-infinity or (sigma(infinity), E-infinity) is replaced by strain e and electric displacement D-infinity or (epsilon(infinity), D-infinity). Mixed conditions (sigma(infinity),D-infinity) and (epsilon(infinity),E-infinity) are also considered. In general, crack growth is found to be larger when compared to that without the application of electric disturbances. This includes both the electric field and displacement. For the eight possible boundary conditions, crack growth retardation is identified only with (E-y(infinity),sigma(y)(infinity)) for negative E-y(infinity) and (D-y(infinity), epsilon(y)(infinity)) for positive D-y(infinity) while the mechanical conditions sigma(y)(infinity) or epsilon(y)infinity are not changed. Suitable combinations of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cracking of ceramics with tetragonal perovskite grain structure is known to appear at different sites and scale level. The multiscale character of damage depends on the combined effects of electromechanical coupling, prevailing physical parameters and boundary conditions. These detail features are exhibited by application of the energy density criterion with judicious use of the mode I asymptotic and full field solution in the range of r/a = 10(-4) to 10(-2) where r and a are, respectively, the distance to the crack tip and half crack length. Very close to the stationary crack tip, bifurcation is predicted resembling the dislocation emission behavior invoked in the molecular dynamics model. At the macroscopic scale, crack growth is predicted to occur straight ahead with two yield zones to the sides. A multiscale feature of crack tip damage is provided for the first time. Numerical values of the relative distances and bifurcation angles are reported for the PZT-4 ceramic subjected to different electric field to applied stress ratio and boundary conditions that consist of the specification of electric field/mechanical stress, electric displacement/mechanical strain, and mixed conditions. To be emphasized is that the multiscale character of damage in piezoceramics does not appear in general. It occurs only for specific combinations of the external and internal field parameters, elastic/piezoelectric/dielectric constants and specified boundary conditions. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many physical experiments have shown that the domain switching in a ferroelectric material is a complicated evolution process of the domain wall with the variation of stress and electric field. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of ferroelectric ceramic and used to study the nonlinear constitutive behavior of ferroelectric body in this paper. The principle of stationary total energy is put forward in which the basic unknown quantities are the displacement u (i) , electric displacement D (i) and volume fraction rho (I) of the domain switching for the variant I. Mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion. On the basis of the domain switching criterion, a set of linear algebraic equations for the volume fraction rho (I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. Then a single domain mechanical model is proposed in this paper. The poled ferroelectric specimen is considered as a transversely isotropic single domain. By using the partial experimental results, the hardening relation between the driving force of domain switching and the volume fraction of domain switching can be calibrated. Then the electromechanical response can be calculated on the basis of the calibrated hardening relation. The results involve the electric butterfly shaped curves of axial strain versus axial electric field, the hysteresis loops of electric displacement versus electric filed and the evolution process of the domain switching in the ferroelectric specimens under uniaxial coupled stress and electric field loading. The present theoretic prediction agrees reasonably with the experimental results given by Lynch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact behaviour of a range of glass and ceramic materials has been studied using high-speed photography. A gas gun was used to project hardened spheres at plate specimens in the velocity range 30 to 1000m s-1. The target materials included soda-lime glass, boron carbide and various glass ceramics and aluminas. The performance of a particular ceramic was found to depend on a combination of parameters but of key importance was the relative hardness of the projectile and target materials. The fracture toughness, K(IC), had only a secondary effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A universal Biot number of ceramics, which not only determines the susceptibility of the ceramics to quenching but also indicates the duration that the ceramics fail during thermal shock, is theoretically obtained. The present analysis shows that the thermal shock failure of the ceramics with a Biot number greater than this universal value is a very rapid process that just occurs in the initial regime of the heat conduction of the ceramics. This universal Biot number provides a guide to the selection of the ceramics applying to the thermostructural engineering including thermal shock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the conversion of near-ultraviolet radiation of 250-350 nm into near-infrared emission of 970-1100 nm in Yb3+-doped transparent glass ceramics containing Ba2TiSi2O8 nanocrystals due to the energy transfer from the silicon-oxygen-related defects to Yb3+ ions. Efficient Yb3+ emission (F-2(5/2)-> F-2(7/2)) was detected under the excitation of defects absorption at 314 nm. The occurrence of energy transfer is proven by both steady state and time-resolved emission spectra, respectively, at 15 K. The Yb2O3 concentration dependent energy transfer efficiency has also been evaluated, and the maximum value is 65% for 8 mol % Yb2O3 doped glass ceramic. These materials are promising for the enhancement of photovoltaic conversion efficiency of silicon solar cells via spectra modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband near-infrared (IR) luminescence in transparent alkali gallium silicate glass-ceramics containing N2+-doped beta-Ga2O3 nanocrystals was observed. This broadband emission could be attributed to the T-3(2g) (F-3) -> (3)A(2g) (F-3) transition of octahedral Ni2+ ions in glass-ceramics. The full width at half-maximum (FWHM) of the near-IR luminescence and fluorescent lifetime of the glass-ceramic doped with 0.10 mol% NiO were 260 nm and similar to 1220 mu s, respectively. It is expected that transparent Ni2+-doped beta-Ga2O3 glass-ceramics with this broad near-IR emission and long fluorescent lifetime have potential applications as super-broadband optical amplification media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent Ni2+-doped beta-Ga2O3 glass-ceramics were synthesized. The nanocrystal phase in the glass-ceramics was identified to be beta-Ga2O3 and its size was about 3.6 nm. It was confirmed from the absorption spectra that the ligand environment of Ni2+ ions changed from the trigonal bi-pyramid fivefold sites in the as-cast glass to the octahedral sites in the glass-ceramics. The broadband infrared emission centering at 1270 nm with full width at half maximum (FWHM) of more than 250 nm was observed. The fluorescence lifetime was about 1.1 mu s at room temperature. The observed infrared emission could be attributed to the T-3 (2g) (F-3) -> (3)A (2g) (F-3) transition of octahedral Ni2+ ions. It is suggested that the Ni2+-doped transparent beta-Ga2O3 glass-ceramics with broad bandwidth and long lifetime have a potential as a broadband amplification medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence. After heat-treatment, ZnAl2O4 crystallite was precipitated in the glasses, and its average size increased with increasing heat-treatment temperature. No infrared emission was detected in the as-prepared glass samples, while broadband infrared luminescence centered at 1310 nm with full width at half maximum (FWHM) of about 300 nm was observed from the glass-ceramics. The peak position of the infrared luminescence showed a blue-shift with increasing heat-treatment temperature, but a red-shift with an increase in NiO concentration. The mechanisms of the observed phenomena were discussed. These glass-ceramics are promising as materials for super broadband optical amplifier and tunable laser. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter demonstrates an alternative method to form gallium silicate glass ceramics using high-energy electron irradiation. Compared with glass ceramics obtained from the conventional thermal treatment method, the distribution and crystal sizes of the precipitated Ga2O3 nanoparticles are the same. An advantage of this method is that the spatial distribution of the precipitated nanoparticles can be easily controlled. However, optically active dopants Ni2+ ions do not participate in the precipitation during electron irradiation. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent Ni2+-doped MgO-Al2O3-TiO2-SiO2 glass ceramics were prepared, and the optical properties of Ni2+-doped glass ceramics were investigated. Broadband emission centered at 1320 nm was observed by 980 nm excitation. The longer wavelength luminescence compared with Ni2+-doped Li2O-Ga2O3-SiO2 glass ceramics is ascribed to the low crystal field hold by Ni2+ in MgO-Al2O3-TiO2-SiO2 glass ceramics. The change in optical signals at the telecommunication bands with or without 980 nm excitation was also measured when the seed beam passes through the bulk gain host.(C) 2007 American Institute of Physics.