3 resultados para Martian

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on the colonization of environmentally extreme ground surfaces were conducted in a Mars-like desert area of Inner Mongolia, People's Republic of China, with microalgae and cyanobacteria. We collected and mass-cultured cyanobacterial strains from these regions and investigated their ability to form desert crusts artificially. These crusts had the capacity to resist sand wind erosion after just 15 days of growth. Similar to the surface of some Chinese deserts, the surface of Mars is characterized by a layer of fine dust, which will challenge future human exploration activities, particularly in confined spaces that will include greenhouses and habitats. We discuss the use of such crusts for the local control of desert sands in enclosed spaces on Mars. These experiments suggest innovative new directions in the applied use of microbe-mineral interactions to advance the human exploration and settlement of space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyrite is the most stable iron-sulfide in reduced environment, and plays an important role in geochemical iron-sulfur cycling of sediments. Thus, the presence of pyrite in sediments and rocks is an important indicator of sedimentary environments. Previous studies on the thermal products of pyrite showed that all of the products (e.g., pyrrhotite, magnetite, hematite) have strong capability of carrying remanence. To deepen our understanding of the environmental and paleomagnetic significances of pyrite, the mineral transformation processes of pyrite upon heating were systematically investigated in this study using intergrated rock magnetic experiments (in both argon and air atmospheres) and X-ray diffraction analysis. The room temperature susceptibility of the paramagnetic pyrite is about 2.68×10-5 SI. In argon atmosphere (reducing environment), pyrite was transformed into monoclinic stable single domain (SD) pyrrhotite above 440 C. The corresponding coercive force and remanence coercivity are about 20 mT and 30 mT, respectively. In contrast, in air atmosphere (oxidation environment), the intermediate thermal products of pyrite are magnetite and pyrrhotite, which were quickly further oxidated to SD hematite, which has coercivity of about 1400 mT. In addition, the hematite particles gradually grow from SD to PSD grain size region by multiple heating runs. The transformation processes of pyrite in oxidation atomosphere can be interpreted by three possible pathways: (1) pyrite→magnetite→hematite; (2) pyrite→pyrrhotite→magnetite→hematite; and (3) pyrite→pyrrhotite→hematite. Low-temperature magnetic experiments show no transitions for pyrite. Despite that low-temperature magnetic method is not suitable for identification of pyrite, it is clear in this study that the high-temperature thermomagnetic measurements (e.g.,  -T and J-T curves) are very sensitive to the presence of pyrite in sediments and rocks. Nevertheless, for the thermal treatment products, low-temperature magnetic measurements showed the 34 K transition of pyrrhotite and the 250 K Morine transition of hematite. Iron-sulfide has also been found on Martian meteorolites by other workers. Therefore, systematic study of rock magnetism of pyrite (and other iron-sulfides) and their products will have great significances for both paleomagnetism and planetary magnetism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chinese National Antarctic Research Expedition (CHTNARE) has collected 4480 meteorite specimens in the Grove Mountains, East Antarctica, from 1998 to 2003. According to the location characteristics and the diversity of the classification, the paper concludes that the Grove Mountains is another important meteorite concentration area in the Antarctica. The Concentration mechanisms at the site could be related to the last glacier activity and katabatic wind. An empirical model was proposed: 1) Probably during the Last Glacial Maximum, ice flow overrided the Gale Escarpment range in the area. Formerly concentrated meteorites were carried by the new glacier and stayed in the terminal moraine when the glacier retreated. 2) Blown by strong katabatic wind, Newly exposed meteorites on the ablation zone were scattered on the blue ice at the lee side of the Gale escarpment. Some of them would be buried when they were moved further onto the firn snow zone. Many floating meteorites stopped and mustered at the fringe of the moraine. The chemical-petrographic of 31 meteorites were assigned based on electron probe microanalyses, petrography and mineralogy, including 1 martian lherzolitic shergottite, 1 eucrite, 1 extreme fine grain octahedron iron meteorite, and 28 ordinary chondrites (the chemical groups: 7 H-group, 13 L-group, 6 LL-group, 2 L/LL group; the petrographic types: 6 unequilibrated type 3 and 22 equilibrated type 4-6). GRV99028 meteorite has the komatiite-like spinifex texture consisting of acicular olivine crystals and some hornblende-family minerals in the interstitial region. Possibly it has crystallized from a supercooled, impact-generated, ultramafic melt of the host chondrite, then experienced the retrogressive metamorphism. Four typical chondrule textures were studied: porphyritic texture, radiative texture, barred texture and glass texture. The minerals are characteristically enriched in MgO content.