68 resultados para Marine plants.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Seven new cadinane sesquiterpenes, (-)-(1R,6S,7S,10R)-1-hydroxycadinan-3-en-5-one (1), (+)-(1R,5S,6R,7S, 10R)-cadinan-3-ene-1,5-diol (2), (+)-(1R,5R,6R,7S,10R)-cadinan-3-ene-1,5-diol (3), (+)-(1R,5S,6R,7S,10R)-cadinan-4(11)-ene-1,5-diol (4), (+)-(1R,5R,6R,7R,10R)-cadinan-4(11)-ene-1,5,12-triol (5), (-)-(1R,4R,5S,6R,7S, 10R)-cadinan-1,4,5-triol (6), and (-)-(1R,6R,7S,10R)-11-oxocadinan-4-en-1-ol (7), together with nine known compounds were isolated from the brown alga Dictyopteris divaricata. The structures of the new natural products, as well as their absolute configuration, were established by means of spectroscopic data including IR, HRMS, 1D and 2D NMR, single-crystal X-ray diffraction, and CD. All compounds were inactive against several human cancer cell lines including lung adenocarcinoma (A549), stomach cancer (BGC-823), breast cancer (MCF-7), hepatoma (Bel7402), and colon cancer (HCT-8) cell lines.
Resumo:
Five minor sesquiterpenes (1-5) with two novel carbon skeletons, together with a minor new oplopane sesquiterpene ( 6), have been isolated from the brown alga Dictyopteris divaricata. By means of spectroscopic data including IR, HRMS, 1D and 2D NMR, and CD, their structures including absolute configurations were assigned as (+)-(1R, 5S, 6S, 9R)3- acetyl-1-hydroxy-6-isopropyl-9-methylbicyclo[4.3.0] non-3-ene ( 1), (+)-(1R, 3S, 4S, 5R, 6S, 9R)-3-acetyl-1,4-dihydroxy-6- isopropyl-9-methylbicyclo[4.3.0] nonane (2), (+)-(1R, 3R, 4R, 5R, 6S, 9R)-3-acetyl-1,4-dihydroxy-6-isopropyl-9-methylbicyclo[ ;4.3.0] nonane ( 3), (+)-(1S, 2R, 6S, 9R)-1-hydroxy-2-(1-hydroxyethyl)-6-isopropyl-9-methylbicyclo[4.3.0] non-4-en-3-one (4), (-)-( 5S, 6R, 9S)-2-acetyl-5-hydroxy-6-isopropyl-9-methylbicyclo[4.3.0] non-1-en-3-one ( 5), and (-)-( 1S, 6S, 9R)- 4-acetyl- 1-hydroxy-6-isopropyl-9-methylbicyclo[ 4.3.0] non-4-en-3-one ( 6). Biogenetically, the carbon skeletons of 1-6 may be derived from the co-occurring cadinane skeleton by different ring contraction rearrangements. Compounds 1-6 were inactive (IC50 > 10 mu g/mL) against several human cancer cell lines.
Resumo:
Three bisnorsesquiterpenes (1-3) with novel carbon skeletons and a norsesquiterpene (4) have been isolated from the brown alga Dictyopteris divaricata. By means of spectroscopic data including IR, HRMS, 1D and 2D NMR techniques, single-crystal X-ray diffraction, and CD, their structures including absolute configurations were proposed as (+)-1R,6S,9R)-1-hydroxyl-6-isopropyl-9-methylbicyclo[4.3.0]non-4-en3-one (1), (-)-(1S,6S,9R)-1-hydroxyl-6-isopropyl-9-methylbicyclo[4.3.0] non-4-en-3-one (2), (+)-(5S,6R,9S)5-hydroxyl-6-isopropyl-9-methylbicyclo [4.3.01 non-1-en-3-one (3), and (-)-(1R,7S,10R)-1-hydroxy-1lnorcadinan-5-en-4-one (4). Biogenetically, the carbon skeleton of 1-3 may be derived from the co-occurring cadinane skeleton by ring contraction and loss of two carbon units, and compound 4 from the oxidation of cadinane derivatives. Compounds 1-4 were inactive (IC50 > 10 mu g/mL) against several human cancer cell lines including lung adenocarcinoma (A549), stomach cancer (BGC-823), breast cancer (MCF-7), hepatoma (Bel7402), and colon cancer (HCT-8) cell lines.
Resumo:
Intertidal marine macroalgae experience periodical exposures during low tide due to their zonational distribution. The duration of such emersion leads to different exposures of the plants to light and aerial CO2, which then affect the physiology of them to different extents. The ecophysiological responses to light and CO2 were investigated during emersion in two red algae Gloiopeltis furcata and Gigartina intermedia, and two brown algae Petalonia fascia and Sargassum hemiphyllum, growing along the Shantou coast of China. The light-saturated net photosynthesis in G. furcata and P. fascia showed an increase followed by slightly desiccation, whereas that in G. intermedia and S. hemiphyllum exhibited a continuous decrease with water loss. In addition, the upper-zonated G. furcata and P. fascia, exhibited higher photosynthetic tolerance to desiccation and required higher light level to saturate their photosynthesis than the lower-zonated G. intemedia and S. hemiphyllum. Desiccation had less effect on dark respiration in these four algae compared with photosynthesis. The light-saturated net photosynthesis increased with increased CO2 concentrations, being saturated at CO2 concentrations higher than the present atmospheric level in G. furcata, G. intermedia and S. hemiphyllum during emersion. It was evident that the relative enhancement of photosynthesis by elevated CO, in those three algae increased, though the absolute values of photosynthetic enhancement owing to CO2 increase were reduced when the desiccation statuses became more severe. However, in the case of desiccated P. fascia (water loss being greater than 20 %), light saturated net photosynthesis was saturated with current ambient atmospheric CO2 level. It is proposed that increasing atmospheric CO2 will enhance the daily photosynthetic production in intertidal macroalgae by varied extents that were related to the species and zonation.
Resumo:
Seven parguerane diterpenes: 15-bromo-2,7,19-triacetoxyparguer-9(11)-en-16-ol (1), 15-bromo-2,7,16,19-tetraacetoxyparguer-9(11)-ene (2), 15-bromo-2,19-diacetoxyparguer-9(11)-en-7,16-diol (3), 15-bromo-2,16,19-triacetoxyparguer-9(11)-en-7-ol (4), 15bromo-2,16-diacetoxyparguer-9(11)-en-7-ol (5), 15-bromoparguer-9(11)-en-16-ol (6), 15-bromoparguer-7-en-16-ol (7), two polyether triterpenes: thyrsiferol (8) and thyrsiferyl 23-acetate (9), and one C15-acetogenin, neolaurallene (10), were isolated from a sample of marine red alga Laurencia saitoi collected off the coast of Yantai. Their structures were established by detailed NMR spectroscopic analysis and comparison with literature data.
Resumo:
Four new halogenated sesquiterpenes, 10-bromo-3-chloro-2,7-epoxychamigr-9-en-8a-of (1), 2,10 beta-dibromochamigra-2,7-dien-9 alpha-ol (2), (9S)-2-bromo-3-chloro-6,9-epoxybisabola-7(14),10-diene (3), and (9R)-2-bromo-3-chloro-6,9-epoxybisabola-7(14),10-diene (4), were characterized from the marine red alga Laurencia saitoi. In addition, two known halosesquiterpenes, 2,10-dibromo-3-chlorochamigr-7-en-9 alpha-ol (5) and isolaurenisol (6), were also isolated and identified. Their structures were established on the basis of extensive analysis of spectroscopic data.
Resumo:
The past decade has seen the genetic engineering of various types of seaweed. To date, genetic transformation studies have been carried out in several seaweeds, including the red seaweeds Porphyra, Gracilaria, Grateloupia, Kappaphyclus and Ceramium and the green seaweed Ulva. A genetic transformation model system has been established in the most commonly cultivated seaweed, the brown seaweed Laminaria japonica (kelp), based on the transfer of technology used in land plant transformation and also by modulating the seaweed life cycle. This model showed the potential for application of transgenic kelp to the production of valuable products and an indoor cultivation system for transgenic kelp was proposed, taking into account necessary factors for bio-safety. In this review, the establishment at use of the kelp transformation model is introduced, highlighting the potential for transforming kelp into a marine bioreactor.
Resumo:
The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae were investigated. In addition, the seasonal variation of inorganic elements in Sargassum kjellmanianum was also studied. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Studies of abundance, diversity and distribution of antibiotic-resistant bacteria and their resistance determinants are necessary for effective prevention and control of antibiotic resistance and its dissemination, critically important for public health and environment management. In order to gain an understanding of the persistence of resistance in the absence of a specific antibiotic selective pressure, microbiological surveys were carried out to investigate chloramphenicol-resistant bacteria and the chloramphenicol acetyltransferase resistance genes in Jiaozhou Bay after chloramphenicol was banned since 1999 in China. About 0.15-6.70% cultivable bacteria were chloramphenicol resistant, and the highest abundances occurred mainly in the areas near river mouths or sewage processing plants. For the dominant resistant isolates, 14 genera and 25 species were identified, mostly being indigenous estuarine or marine bacteria. Antibiotic-resistant potential human or marine animal pathogens, such as Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and Shewanella algae, were also identified. For the molecular resistance determinants, the cat I and cat III genes could be detected in some of the resistant strains, and they might have the same origins as those from clinical strains as determined via gene sequence analysis. Further investigation about the biological, environmental and anthropogenic mechanisms and their interactions that may contribute to the persistence of antibiotic-resistance in coastal marine waters in the absence of specific antibiotic selective pressure is necessary for tackling this complicated environmental issue.
Resumo:
A series of static and cyclic-static tri-axial compression tests under consolidated-undrained conditions are carried out to study the characteristics of post-cyclic strength of the undisturbed and the remolded samples of marine silty clay. It is found that the post-cyclic monotonic strength decreases if the cyclic strain or pore pressure is over a certain value. The maximum degradation is 10% for undisturbed samples while 70% for remolded ones. The relationship between normalized undrained shear strength and apparent overconsolidation ratio, which is determined by the excess pore pressure induced by cyclic loading, is also established. Static consolidated-undrained tests on overconsolidated remolded samples are also performed. It is proposed that the static consolidated-undrained tests may be substituted for the cyclic-static consolidated-undrained tests if the post-cyclic strength degradation of remolded silty clay is needed to be evaluated simply.