4 resultados para Mammary neoplasm

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

目的:评价重离子束对皮肤恶性肿瘤放射治疗的近期疗效和毒副反应。方法:29例皮肤恶性肿瘤患者分6批接受重离子束放射治疗,其中恶性黑色素瘤13例,皮肤鳞癌及Bowen’s病各6例,基底细胞癌2例,其他皮肤恶性肿瘤2例。照射总剂量(50~70)GyE/(6~12)d,单次剂量5.5~11.67GyE,1f/d,连续治疗。采用RTOG标准和WHO近期疗效标准分别评价毒副反应和近期疗效。结果:截止2009-05,中位随访时间为13.5个月(1~25个月),随访率为100%。29例患者中完全缓解(CR)24例(82.8%),部分缓解(PR)5例(17.2%),有效率(RR)为100%,中位生存时间为22.8个月(95%CI:20.6~24.9)。皮肤反应0度11例(37.9%),Ⅰ度9例(31.0%),Ⅱ度6例(20.7%),Ⅲ度2例(6.9%),Ⅳ度1例(3.4%);血液毒副反应治疗前后无明显改变。结论:重离子束(12C6+)放射治疗皮肤恶性肿瘤近期疗效好,并发症轻,远期疗效、晚期副反应等尚需进一步长期全面的观察和更多的研究提供依据。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The giant panda skeletal muscle cells, uterus epithelial cells and mammary gland cells from an adult individual were cultured and used as nucleus donor for the construction of interspecies embryos by transferring them into enucleated rabbit eggs. All the three kinds of somatic cells were able to reprogram in rabbit ooplasm and support early embryo development, of which mammary gland cells were proven to be the Lest, followed by uterus epithelial cells and skeletal muscle cells. The experiments showed that direct injection of mammary gland cell into enucleated rabbit ooplasm, combined with in vivo development in ligated rabbit oviduct, achieved higher blastocyst development than in vitro culture after the somatic cell was injected into the perivitelline space and fused with the enucleated egg by electrical stimulation. The chromosome analysis demonstrated that the genetic materials in reconstructed blastocyst cells were the same as that in panda somatic cells. In addition, giant panda mitochondrial DNA (mtDNA) was shown to exist in the interspecies reconstructed blastocyst. The data suggest that (i) the ability of ooplasm to dedifferentiate somatic cells is not species-specific; (ii) there is compatibility between interspecies somatic nucleus and ooplasm during early development of the reconstructed egg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have cloned a mouse homologue (designated Myak) of the yeast protein kinase YAK1. The 1210 aa open reading frame contains a putative protein kinase domain, nuclear localization sequences and PEST sequences. Myak appears to be a member of a growing family of YAK1-related genes that include Drosophila and human Minibrain as well as a recently identified rat gene ANPK that encode a steroid hormone receptor interacting protein. RNA blot analysis revealed that Myak is expressed at low levels ubiquitously but at high levels in reproductive tissues, including testis, epididymis, ovary, uterus, and mammary gland, as well as in brain and kidney. In situ hybridization analysis on selected tissues revealed that Myak is particularly abundant in the hormonally modulated epithelia of the epididymis, mammary gland, and uterus, in round spermatids in the testis, and in the corpora lutea in the ovary, Myak is also highly expressed in the aqueduct of the adult brain and in the brain and spinal cord of day 12.5 embryos, Mol. Reprod. Dev. 55:372-378, 2000. (C) 2000 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The consequence of activation status or gain/loss of an X-chromosome in terms of the expression of tumor suppressor genes or oncogenes in breast cancer has not been clearly addressed. In this study, we investigated the activation status of the X-chromosomes in a panel of human breast cancer cell lines, human breast carcinoma, and adjacent mammary tissues and a panel of murine mammary epithelial sublines ranging from low to high invasive potentials. Results show that most human breast cancer cell lines were homozygous, but both benign cell lines were heterozygous for highly polymorphic X-loci (IDS and G6PD). On the other hand, 60% of human breast carcinoma cases were heterozygous for either IDS or G6PD markers. Investigation of the activation status of heterozygous cell lines revealed the presence of only one active X-chromosome, whereas most heterozygous human breast carcinoma cases had two active X-chromosomes. Furthermore, we determined whether or not an additional active X-chromosome affects expression levels of tumor suppressor genes and oncogenes. Reverse transcription-PCR data show high expression of putative tumor suppressor genes Rsk4 and RbAp46 in 47% and 79% of breast carcinoma cases, respectively, whereas Cldn2 was down-regulated in 52% of breast cancer cases compared with normal adjacent tissues. Consistent with mRNA expression, immunostaining for these proteins also showed a similar pattern. In conclusion, our data suggest that high expression of RbAp46 is likely to have a role in the development or progression of human breast cancer. The activation status of the X-chromosome may influence the expression levels of X-linked oncogenes or tumor suppressor genes.