14 resultados para Maine Sea Fisheries
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The Bohai Sea was the site of the Chinese national GLOBEC programme. During the June 1997 cruises of R/V Science No.1, observations and experiments on zooplankton feeding were conducted. At five 48 h time-series stations the following observations and measurements on zooplankton were carried out: (1) diurnal vertical migration, by collecting samples at different layers every 3 h with a closing net; (2) diurnal feeding rhythms, by gut pigment analysis; and (3) ingestion rate, by both gut pigment analysis and the dilution method. A classification by body size was used to deal with the diversity of species and developmental stages of zooplankton assemblages. Samples were separated into three size groups: small (200-500 mu m), medium (500-1000 mu m) and large (> 1000 mu m). The results showed that the copepods (Calanus sinicus, Paracalanus parvus, Acartia bifilosa and Centropages mcmurrichi) performed clear diurnal vertical migrations. However, their behaviour was different at different stations. The variation in gut pigment content over the 24 h cycle showed strong diurnal feeding rhythms, particularly for the large size group. Gut pigment contents reached their daily maximum during the time from dusk to midnight (18:00-24:00). The peak value was about 10 times the minimum observed in the daytime. The in situ daily grazing rate, based on gut pigment contents and evacuation experiments, was 4.00-12.65 ng chla ind(-1) day(-1) for the small size group, 5.99-66.58 ng chla ind(-1) day(-1) for the medium size group and 31.31-237.13 ng chla ind(-1) day(-1) for the large size group. The copepods consumed only a small part (2.90-13.52%) of the phytoplankton biomass hut about 77% of the daily production. The grazing mortality rate of phytoplankton by microzooplankton (<200 mu m) measured by the dilution method ranged from 0.43 to 0.69 day(-1) The calculated daily consumption of phytoplankton biomass was 35-50%, and 85-319% of the potential production.
Resumo:
Stomach contents were examined of 4527 adult individuals of 12 flatfish species collected during the 1982 - 1983 Bohai Sea Fisheries Resources Investigation. Their food habits, diet diversity, similarity of prey taxa, trophic niche breadth and diet overlap were systematically analysed. Ninety-seven prey species belonging to the Coelenterata, Nemertinea, Polychaeta, Mollusca, Crustacea, Echinodermata, Hemichordata and fish were found and five of them were considered to be principal prey for flatfishes: Alpheus japonicus, Oratosquilla oratoria, Alpheus distinguendus, Loligo japonicus and Crangon affinis. Among the flatfishes, Paralichthys olivaceus was piscivorous, whereas Pseodopleuronectes yokohamae and Pseudopleuronectes herzensteini both had polychaetes and molluscs as their main prey groups. Pleuronichthys cornutus was classified as a polychaete-mollusc eater, with a strong preference for crustaceans. Verasper variegatus, Cynoglossus semilaevis, Eopsetta grigorjewi and Cleisthenes herzensteini ate crustaceans. Kareius bicoloratus was classified as a mollusc-crustacean eater: Cynoglossus abbreviatus, Cynoglossus joyneri and Zebrias zebra were grouped as crustacean-fish eaters. However, Z. zebra also took polychaetes and C. abbreviatus and C. joyneri preyed on some molluscs. Trophic relationships among the flatfishes were complicated, but they occupied distinctive microhabitats in different seasons and selected their specific prey items, which was favourable to the stability of the flatfish community in the Bohai Sea.
Resumo:
Heritabilities and genetic and phenotypic correlations were estimated for body weight, test diameter, and test height of the sea urchin from measurements on progeny resulting from 11 sires and 33 dams by artificial fertilization of 3 females by single males, and measurements at 8, 10, and 12 months after metamorphism. Point estimate for heritabilities based on the sire components of variance were moderate to high for body weight (0.21-0.49), test diameter (0.21-0.47), and test height (0.22-0.37). Genetic correlations were significant for body weight with test diameter (0.30similar to0.65) and test height (0.30similar to0.54) and test diameter with test height (0.31similar to0.65). Genetic correlation estimates, derived the nested design and half-sib correlation analysis used in this study, appear to provide reliable estimates. Significant phenotypic correlations were found for body weight with test diameter (0.82similar to0.86) and test height (0.49similar to0.83), and test diameter with test height (0.47similar to0.84). The phenotypic correlations for test height with body weight (0.491) and test diameter (0.467) at 12 months' of age were smaller than those earlier sampling periods.(C) 2004 Published by Elsevier B.V.
Resumo:
Growth hormone (GH), prolactin (PRL) and somatolactin (SL) were purified simultaneously under alkaline condition (pH 9.0) from pituitary glands of sea perch (Lateolabrax japonicas) by a two-step procedure involving gel filtration on Sephadex G-100 and reverse-phase high-performance liquid chromatography (rpHPLC). At each step of purification, fractions were monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and by immunoblotting with chum salmon GH. PRL and SL antisera. The yields of sea perch GH, PRL and SL were 4.2, 1.0 and 0.28 mg/g wet tissue, respectively. The molecular weights of 19,200 and 20,370 Da were estimated by SDS-PAGE for sea perch GH and PRL, respectively. Two forms of sea perch SL were found: one (28,400 Da) is probably glycosylated, while the other one (23,200 Da) is believed to be deglycosylated. GH bioactivity was examined by an in vivo assay. Intraperitoneal injection of sea perch GH at a dose of 0.01 and 0.1 mug/g body weight at 7-day intervals resulted in a significant increase in body weight and length of juvenile rainbow trout. The complete sea-perch GH amino acid sequence of 187 residues was determined by sequencing fragments cleaved by chemicals and enzymes. Alignment of sea-perch GH with those of other fish GHs revealed that sea-perch GH is most similar to advanced marine fish, such as tuna, gilthead sea bream, yellowfin porgy, red sea bream, bonito and yellow tail with 98.4, 96.2%, 95.7%, 95.2%, 94.1% and 91% sequence identity, respectively. Sea-perch GH has low identity to Atlantic cod (76.5%), hardtail (73.3%), flounder (68.4%), chum salmon (66.3%), carp (54%) and blue shark (38%). Partial amino-acid sequences of 127 of sea-perch PRL and the N-terminal of 16 amino-acid sequence of sea-perch SL have been determined. The data show that sea-perch PRL has a slightly higher sequence identity with tilapia PRL( 73.2%) than with chum salmon PRL(70%) in this 127 amino-acid sequence. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
To investigate the seasonal and interannual variations in biological productivity in the South China Sea (SCS), a Pacific basin-wide physical - biogeochemical model has been developed and used to estimate the biological productivity and export flux in the SCS. The Pacific circulation model, based on the Regional Ocean Model Systems (ROMS), is forced with daily air-sea fluxes derived from the NCEP (National Centers for Environmental Prediction) reanalysis between 1990 and 2004. The biogeochemical processes are simulated with a carbon, Si(OH)(4), and nitrogen ecosystem (CoSiNE) model consisting of silicate, nitrate, ammonium, two phytoplankton groups (small phytoplankton and large phytoplankton), two zooplankton grazers (small micrograzers and large mesozooplankton), and two detritus pools. The ROMS-CoSiNE model favourably reproduces many of the observed features, such as ChI a, nutrients, and primary production (PP) in the SCS. The modelled depth-integrated PP over the euphotic zone (0-125 m) varies seasonally, with the highest value of 386 mg C m (-2) d (-1) during winter and the lowest value of 156 mg C m (-2) d (-1) during early summer. The annual mean value is 196 mg C m (-2) d (-1). The model-integrated annual mean new production (uptake of nitrate), in carbon units, is 64.4 mg C m (-2) d (-1) which yields an f-ratio of 0.33 for the entire SCS. The modelled export ratio (e-ratio: the ratio of export to PP) is 0.24 for the basin-wide SCS. The year-to-year variation of biological productivity in the SCS is weaker than the seasonal variation. The large phytoplankton group tends to dominate over the smaller phytoplankton group, and likely plays an important role in determining the interannual variability of primary and new production.
Resumo:
To investigate the effects of body size and water temperature on feeding and growth in the sea cucumber Apostichopus japonicus (Selenka), the maximum rate of food consumption in terms of energy (C-maxe; J day(-1)) and the specific growth rate in terms of energy (SGRe; % day(-1)) in animals of three body sizes (mean +/- SE) - large (134.0 +/- 3.5 g), medium (73.6 +/- 2.2 g) and small (36.5 +/- 1.2 g) - were determined at water temperatures of 10, 15, 20, 25 and 30 degrees C. Maximum rate of food consumption in terms of energy increased and SGRe decreased with increasing body weight at 10, 15 and 20 degrees C. This trend, however, was not apparent at 25 and 30 degrees C, which could be influenced by aestivation. High water temperatures (above 20 degrees C) were disadvantageous to feeding and growth of this animal; SGRe of A. japonicus during aestivation was negative. The optimum temperatures for food consumption and for growth were similar and were between 14 and 15 degrees C, and body size seemed to have a slight effect on the optimal temperature for food consumption or growth. Because aestivation of A. japonicus was temperature dependent, the present paper also documented the threshold temperatures to aestivation as indicated by feeding cessation. Deduced from daily food consumption of individuals, the threshold temperature to aestivation for large and medium animals (73.3-139.3 g) was 24.5-25.5 degrees C, while that for small animals (28.9-40.7 g) was between 25.5 and 30.5 degrees C. These values are higher than previous reports; differences in sign of aestivation, experimental condition and dwelling district of test animals could be the reasons.
Resumo:
The abundance of Calanus sinicus eggs, nauplii, copepodites and adults and chlorophyll a (Chl-a) concentration were studied across tidal fronts in October 2000, and May and June 2001 in the Yellow Sea, China. The aim of the study was to evaluate the role of tidal fronts in the ecology of C. sinicus. The hydrographic tidal fronts were identified by the horizontal temperature gradient in the bottom layer and the temperature profiles across the fronts. The survey results showed that the concentration of Chl-a was high in the vicinity of the fronts, particularly in spring and early summer. The abundance of C. sinicus eggs and nauplii was usually higher in the tidal fronts than in the adjacent areas. In May and June 2001, the abundance of copepodites and adults of C. sinicus peaked in the tidal front. In June 2001 and October 2000, many copepodites and adults were found in stratified region.
Resumo:
Pond farming for sea cucumber has developed rapidly along the northern coast of China in the recent years. Holothurians inhabiting ponds undergo seasonal fluctuations of salinity. This study deals with the bioenergetic responses of pond-cultured sea cucumbers Apostichopus japonicus (wet weight of 37.5 +/- 1.8 g) to different water salinities [22, 27, 31.5, and 36 practical salinity units (psu)] at 15 degrees C in the laboratory to determine the influence of water salinity on growth and energy allocation in this species. Results show that ingested energy and scope for growth (SFG) were highest at 31.5 psu and then decreased when water salinity was below or above this point. Although energy ingested was lowest at 36 psu, the lowest SFG occurred at 22 psu (only 102.68 +/- 14.26 J g(-1) d(-1)) because animals reared at 22 psu spent much more consumed energy on feces (72.19%), respiration (21.70%), and excretion (2.59%), leaving less energy for growth (3.52%). Results suggest that pond-cultured sea cucumbers could tolerate chronic salinity fluctuations at a range of 22 to 36 psu and grew better between 27 and 31.5 psu, but decreased at salinities above and below the mentioned salinity range. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
Resumo:
In recent years, bivalve feces and powdered algae have been used as the food sources of holothurians in China. In this study, growth and energy budget for sea cucumber Apostichopus japonicus (Selenka) with initial wet body,veights of 32.5 1.0 g (mean +/- SE, n=45) when fed with five different granule diets containing dried bivalve feces and/or powdered algae in water temperature 13.2-19.8 degrees C and salinity 30-32ppt were quantified in order to investigate how diets influence growth and energy distribution and to find out the proper diet for land-based intensive culture of this species. Results showed that diets affected the food ingestion, feces production, food conversion efficiency and apparent digestive ratios, hence the growth and energy budget. Sea cucumbers fed with dried feces of bivalve showed poorer energy absorption, assimilation and growth than individuals fed with other four diets; this could be because feces-drying process removed much of the benefits. Dried bivalve feces alone, therefore, were not a suitable diet for sea cucumbers in intensive cultivation. The mixed diets of feces and powered algae showed promising results for cultivation of sub-adult Apostichopus japonicus, while animals fed with powdered algae alone, could not obtain the best growth. According to SGR of tested animals, a formula of 75% feces and 25% powdered algae is the best diet for culture of this species. Extruded diets were used in the present experiment to overcome shortcomings of the traditional powdered feeds, however, it seems a conflict exists between drying bivalve feces to form extruded diets and feeding sea cucumbers with fresh feces which contain beneficial bacteria. Compared with other echinoderms, in holothurians the energy deposited in growth is lower and the energy loss in feces accounts for the majority of the ingested energy. Such detailed information could be helpful in further development of more appropriate diets for culture of holothurians. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The substitution of dietary docosahexaenoic acid (DHA) with eicosapentaenoic acid (EPA) reduces larval growth in gilthead sea bream. However, the value of EPA when dietary DHA is able to meet the requirements of the larvae has not been sufficiently studied. Dietary phosphoacylgliceride levels also affect fish growth and it has been suggested that they enhance lipid transport in developing larvae. The present experiment was carried out to further study the effect of dietary lecithin and eicosapentaenoic acid on growth, survival, stress resistance,. larval fatty acid composition and lipid transport, when DHA is present in the microdiets of gilthead:sea bream. Eighteen thousand gilt-head sea bream larvae of 4.99+/-0.53 mm total length were fed three microdiets tested by triplicate: a control diet [2% soybean lecithin (SBL) and 2.89% EPA], a low EPA diet,(2% SBL and 1.63% EPA) and a no SBL diet (0% SBL and 2.71% EPA). Handling, temperature and salinity tests determined larval resistance to stress. The results show that when dietary DHA levels are high, but dietary arachidonic acid (ARA) levels are about 0.2%, EPA is necessary to improve larval growth, and survival. Larval EPA content, but not DHA or ARA, was affected by dietary EPA levels. Increased dietary EPA improved larval stress resistance to handling and temperature tests, which could be related to its possible role as a regulator of cortisol production whereas it did not affect stress resistance after salinity shock. Larvae fed the no SBL diet showed a lower lipid content characterized by a low proportion of saturated and monounsaturated fatty acids, together with a significant reduction in the appearance of lipoprotein particles in the lamina propria and in the size of such particles, denoting a critical reduction in dietary lipid transport and utilization, and lower larval growth and survival rates.
Resumo:
Recent progress in the study of air-sea interface processes for momentum, heat, moisture and mass transfer are reviewed in the present article. Except for turbulent structure, we have analysed the other physical mechanisms occurring in the wave boundary layer, such as the roles of the sea surface state, droplets and bubbles due to wave breaking, which at least partly account for the existing discrepancies between theory and observations. The experiments, both over the ocean and in the laboratory, are described briefly. In conclusion, a few perspective trends in this area are suggested for further investigation.
Resumo:
An apparatus of low-temperature controlling for fatigue experiments and its crack measuring system were developed and used for offshore structural steel A131 under conditions of both low temperature and random sea ice. The experimental procedures and data processing were described, and a universal random data processing software for FCP under spectrum loading was written. Many specific features of random ice-induced FCP which differed with constant amplitude FCP behaviours were proposed and temperature effect on ice-induced FCP was pointed out with an easily neglected aspect in designing for platforms in sea ice emphasized. In the end, differences of FCP behaviours between sea ice and ocean wave were presented.
Resumo:
Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that motions (translations and rotations) are small magnitude. However, when TLP works in severe adverse conditions, the a priori assumption on small displacements may be inadequate. In such situation, the motions should be regarded as finite magnitude. This paper will study stochastic nonlinear dynamic responses of TLP with finite displacements in random waves. The nonlinearities considered are: large amplitude motions, coupling the six degrees-of-freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. The nonlinear dynamic responses are calculated by using numerical integration procedure in the time domain. After the time histories of the dynamic responses are obtained, we carry out cycle counting of the stress histories of the tethers with rain-flow counting method to get the stress range distribution.