22 resultados para Magmatism

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lhasa terrane, located between the Bangonghu-Nujiang suture zone and the Indus-Yalung Tsangpo suture zone in the southern Tibetan Plateau, was considered previously as a Precambrian continental block. Mesozoic and Cenozoic tectonic evolution of the Lhasa terrane is closely related to the subduction of the Tethys ocean and the collision between the Indian and European continents; so it is one of the keys to reveal the formation and evolution of the Tibetan plateau. The garnet two-pyroxene granulite which was found at the Nyingtri rock group of the southeastern Lhasa terrene consists of garnet, clinopyroxene, orthopyroxene, labradorite, Ti-rich amphibolite and biotite, with a chemical composition of mafic rock. The metamorphic conditions were estimated to be at T = 747 similar to 834 degrees C and P = 0.90 similar to 1.35GPa, suggesting a formation depth of 45km. The zircon U-Pb dating for the garnet amphibolite and marble associated with the granulite give a metamorphic age of 85 similar to 90Ma. This granulite-facies metamorphic event together with a contemporaneous magmatism demonstrated that the southern Lhasa terrane has undergone an Andean-type orogeny at Late Mesozoic time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Located in the Paleozoic uplift along the southern margin of Tu-Ha basin in eastern Xinjiang, the newly discovered Hongshan Cu-Au deposit occurs in the superimposed Mesozoic volcanic basin upon the north section of later Paleozoic Dananhu-Tousuquan accretionary arc. Kalatage Cu-Au orebelt is controlled by NWW-trend faults, and includes Hongshan and Meiling Cu-Au deposits. The host rocks of Hongshan ore district are mainly rhyolitic-dacitic ignimbrites, whereas Cu-Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and granitic porphyry. Mineralization styles are dominantly veinlet-disseminated and veinlet, occasionally stockwork. The mineral association is chalcopyrite, pyrite, bornite, chalcocite and sphalerite. The hydrothermal alteration consists of silicfication, sericitization, alunitization, pyrophylitization, illitization, hydromuscovitization, and chloritization. Hongshan Cu-Au deposit, on the edge of the desert, is one of the driest areas in eastrn Tianshan. Moreover, the highest temperature has been up to 60℃, and the average rainfall receives only 34.1mm/y. The light rainfall and rapid evaporation in the vicinity of this deposit have allowed the formation of a great variety of water-soluble sulfates. Oxidization zone of this deposit lies on the upper part of primary sulfide orebodies appearing with a depth of 50-60m, which is dominant in sulfate minerals. 1. Based on the field observation, the volcanic and sub-volcanic rock composition, hydrothermal alteration, ore structure and mineralization characteristics, this paper proposed that the Hongshan Cu-Au deposit belongs to a transitional type from high-sulfide epithermal to porphyry Cu-Au deposit, which corresponds with the typical HS-epithermal deposit such as Zijinshan Au-Cu deposit in Fujian Province, SE-China. 2. The Hongshan copper-gold deposit was controlled by the tectonic, stratum, magma activity and volcanic apparatus, whereas Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and fine grained pyritization in hydrothermal activity, and Cu mineralization is closely related to quartz porphyry and hydrothermal explosive breccia. 3. Oxidation zone of Hongshan Cu-Au deposit lies on the upper part of primary sulfide orebodies deposit. 23 sulfate minerals were identified in this work. The results of samples XRD and chemical analysis were furthermore confirmed through thermal, infrared spectrum and mössbauer spectrum analysis. Among those, nine minerals as Ferricopiapite, Cuprocopiapite, Rhomboclase, Parabutlerite, Krausite, Yavapaiite, Metasideronatrite Kroehnkite and Paracoquimbite were founded in China for the first time. And Paracoquimbite was secondly reported in the world (first case reported at 1938 in Chile). 4. EPMA analysis shows that Al impurity in crystal lattice is important to polytype formation of paracoquimbite and coquimbite besides stack fault. 5. Compared with Meiling Cu-Au deposit in the same Kalatage ore belt from the characteristics of δ34S of barite, lithofacies, hydrothermal alteration and homogeneous temperature, Hongshan Cu-Au deposit belongs to the same metallogenic system of HS-epithermal type as Meiling Cu-Au deposit. But Hongshan Cu-Au deposit has less extensive alteration and shallower denudation. 6. Sulfur isotope analyses show that δ34S values of pyrites vary in the range of +1.86‰~+5.69‰, with an average of 3.70‰, mostly in the range of +1.86‰~+3.20‰, and δ34Scp<δ34Spy. Therefore ore-forming fluid of porphyry comes from mantle and was contaminated by the earth’s crust. Sulfur isotope has reached balance in ore-forming process. 7. Sulfur isotope analyses show that δ34S values of sulfates vary in the range of +2.15‰~+6.73‰, with an average of +3.74‰, mostly equals as δ34S values of primary sulfides in Hongshan Cu-Au deposit. So supergene sulfates inherit sulfur of primary sulfide. δ34S values are mostly same in different sulfates. As well as pyrite and chalcopyrite, volcanic hot spring and associated native sulfur underground also provide water medium and sulfur during the formation process of sulfate. 8. According to the EPMA of sample chalcopyrite and pyrite in Hongshan Cu-Au, the value of Cu/Ni is 0.98-34.72, mostly close to the value of 5, which shows that Hongshan deposit is a typical volcanogenic magmaic hypothermal deposit. Au and Ag, Zn, Te and Bi are positive correlation, Cu and Hg, Se, Sb are positive correlation, indicates Au and Cu don’t locate in the factor of mineralization of same mineralization groups. The reasons of gold concentration in the oxidation zone are: 1). Change of redox potential (Eh) makes gold to deposit from the liquid of mineralization zone; 2). PH is one of the most factors of gold’s deposition; 3). Soluble complex and colloid of gold can be adsorbed easily. 9. The biotite and hornblende K-Ar isotopic ages from the wall rock-quartz diorite, biotite granite and monzonite granite are 231.99±3.45Ma, 237.97±2.36Ma and 296.53±6.69Ma respectively. The ore-bearing rhyolitic breccia lava contains breccia of the biotite granite which indicates the volcanism and related Cu-Au mineralization occurred later than the granite, possibly in Mesozoic. K-Ar ages of granitoids in Sanya, Baishiquan and Hongliugou area and Molybdenite Re-Os age of Baishan Mo deposit all are in Triassic. Besides late Paleozoic magmatism, igneous magmatic event of Mesozoic was widespread in eastern Tianshan. 10. The K-Ar age dating indicates that the K-Ar age of Voltaite occurred below surface 1m is 56.02±3.98Ma, K-Ar age of Ferricopiapite occurred below surface 1.5m is 8.62±1.12Ma, K-Ar age of Yavapaiite occurred below surface 14 m is 4.07±0.39Ma, and K-Ar age of Voltaite occurred below surface 10 m is 14.73±1.73Ma. So the age interval of oxidation zone of Hongshan copper-golden bed is between 60 -3.38Ma. Oxidization occurred at Caenozoic era (from 65Ma), which can be identified through comparing with different deposits oxidation zone in other countries. The coupling between global tectonic event and climatic change event which occur from Caenozoic era has some effect on epigeosphere system, which can act on the surface of bed oxidation zone similarly. It induces that the age mentioned above coincide with collision of India-Asia and multistage uplifting of Qinhai-Tibet Plateau happened subsequently. Bed oxidation zone is the effect and record of collision and uplifting of Tibet Plateau. The strong chemical weathering of surface accumulation to which was leaded by PETM event occurred Paleocene and Eocene is the reason of Voltaite sharply rises. On the contrary, Ferricopiapite formed due to the global cold weather. The predecessor did much research through biota, isotopes, susceptibility, but this paper try to use different sulfate mineral instead of climatic change. So the research of sulfate minerals not only indicates a great deal of oxidized zone feature, but also the intergrowth of sulfate minerals may be used to trace paleoenviroment and paleoclimate of oxidation zone. 11. Analysis of the information of alteration and mineralization features of four bore cores, induced activity polarization well logging and Eh-4 geophysical section, deep mineralization anomaly objects of Hongshan ore districts shows low resistance, middle and high polarization, measurements of Eh-4 consecutive conductance section show the existing of concealed porphyry ore body deeper than 450m, on the top of and around rock body there are low resistance body ranged from 100-300Ω•m, this area may be the ore-bearing part. In a word, Hongshan Cu-Au deposit deposit is a combine of upper HS-style epithermal Au deposit and deeper porphyry mineralization system. It has great potential to find large HS-style epithermal-porphyry Au-Cu deposits. This paper consists of seven chapters and twenty seven sections. The geological character of deposit is basic condition in this work. Constitute of oxidation zone, research of sulfate mineral, relation between oxidation and primary zone, K-Ar ages of potassic sulfate are key parts of thesis. Genesis of ore deposit is the further expansion of this research. Analysis of ore-controlling factors is the penetration above basic. Analysis of potential is application of exploration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jiamusi Massif is an important tectonic unit in Northeast China. It’s significant for understanding the evolution of Paleo-Asian Ocean and reconstruction of the tectonic framework of Northeast China. Mudanjiang area is located in the southern margin of Jiamusi Massif and is the key to understand the evolution of Jiamusi Massif. However, the detailed geological research for Mudanjiang area has long been deficient in many important problems, such as the tectonic components of the Mudanjiang collision zone (MCZ), the age of collisional complexes and the scenario of tectonic evolution. Based on the lithology, geochemistry and the SHRIMP zircon U-Pb geochronology in Mudanjiang area, our new data and results come to some constraints for the tectonic reconstruction of MCZ as follows: 1) It is identified that the former suggestion, which the so-called “Heilongjiang Group” in Mudanjiang area is the vestige of oceanic crust, is correct. The oceanic relics represent the Neo-Proterozoic-Early Paleozoic oceanic basins based on the SHRIMP zircon U-Pb geochronology. 2) One sheet of gabbroic complex with oceanic island-type geochemical signature was discovered by this work in Mudanjiang area. 3) It is verified that the Proterozoic concordant U-Pb ages of the migmatites developed along the southern margin of Jiamusi massif, which represent the events of magmatic intrusion, as the direct evidence for the existence of the Proterozoic crystalline basements of the Jiamusi Massif. Based on geochronology, we suggest that the migmatization and coeval S-type granite magmatism of the southern margin of Jiamusi Massif took place about 490Ma. 4) The island arc complex has been found in the Heilongjiang Group, and the oceanic relics was found distributing on both sides, as provided important constraint for the tectonic reconstruction of the MCZ. 5) ~440Ma metamorphic event and coeval post-collisional granite magmatism have been firmly identified in the MCZ and its southern neighboring area. Together with previous data obtained by other researchers, our conclusions on the reconstruction of the tectonic architecture and evolution of the MCZ as follows: 1) The orogenic assemblages developed in the Mudanjiang collisional zone are featured by a sequence of ancient active continental margins and ensuing orogenic processing. The Mashan Group is the reworking basement of Jiamusi Massif, whereas the Heilongjiang Group represents arc and oceanic complexes characterized by imbricate deep-seated sliced and slivering sheets due to multi-phases of thrusting and nappe stacking. 2) The northern sub-belt of MCZ is probably the arc-continent collisional boundary related to the closure of main oceanic basin. The collisional age can be constrained by the events of syn-orogenic migmatization of migmatite, coeval S-type granite magmatism and the related granulite-facies metamorphism. Therefore, we suggested the collisional age of northern sub-belt is probably Cambrian-Early Ordovician. The extensive granulite-facies metamorphism of the Mashan Group in Jiamusi Massif, as affirmed by former works, was probably related with the collisional event. 3) The southern sub-belt of the MCZ was possibly related with the closure of back-arc basin. We presumed that the collisional age of southern sub-belt is about Ordovician-Early Silurian according to the ~440Ma extensive metamorphism and the occurrence of coeval post-collisional granite magmatism. 4) The extant structural architecture of the MCZ is related to the multi-phases of intra-continental superimposition, which is characterized by the Mesozoic nappe structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continent of eastern China, especially the North China Craton (NCC), has endured intensive tectonic renovation during Mesozoic and Cenozoic, with the presence of widespread magmatism, high heat flow and development of large sedimentary basins and mountain ranges. The cratonic lithosphere of the region has been destroyed remarkably, which is characterized by not only a significant reduction in thickness but also complex modifications in physical and chemical properties of the lithosphere. As for the tectonic regime controlling the evolution of the NCC, various models have been put forward, including the impingement of mantle plumes (“mushroom cloud” model), the collision of south China block and north China block, the subduction of the Pacific plate, etc. Lithosphere delamination and thermal erosion were proposed as the two end-member mechanisms of the lithospheric thinning. However, given the paucity of the data, deep structural evidence is currently still scarce for distinguishing and testifying these models. To better understand the deep structure of the NCC, from 2000 to the present, temporary seismic array observations have been conducted in the NCC by the Seismological Laboratory of the Institute of the Geology and Geophysics, Chinese Academy of Sciences under the North China Interior Structure Project (NCISP). Many arrays extend from the North China Craton and the off-craton regions, and traverse a lot of main tectonic boundaries. A total of more than 300 broadband seismic stations have been deployed along several profiles that traversed the major tectonic units within the craton’s interior, at the boundary areas and in the neighboring off-craton regions. These stations recorded abundant high-quality data, which provides an unprecedented opportunity for us to unravel the deep structural features of the NCC using seismological methods. Among all the seismological methods, the surface wave method appears to be an efficient and widely adopted technique in studying the crustal and upper mantle structures. In particular, it can provide the absolute values of S-wave velocity that are difficult to obtain with other methods. Benefiting from the deployment of dense seismic arrays, progresses have been made in improving the spatial resolution of surface wave imaging, which makes it possible to resolve the fine-scale velocity structures of the crust and upper mantle based on surface wave analysis. Meanwhile, the differences in the S-wave velocities derived from Rayleigh and Love wave data can provide information on the radial anisotropy beneath the seismic arrays. In this thesis, using the NCISP-III broadband data and based on phase velocity dispersion analysis and inversion of fundamental mode Rayleigh and Love waves, I investigated the lateral variations in the S-wave velocity structure of the crust and uppermost mantle beneath the Yanshan Belt and adjacent regions at the northeastern boundary of the NCC. Based on the constructed structural images, I discussed possible deep processes of the craton destruction in the study region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Qilian Orogenic Belts had undergone very complicated evolutional histories and play an important role in understanding the tectonic evolutions of old terrains in northwestern China, in which granitiods formed during Proterozoic-early Mesozoic are widely outcropped. Detailed studies of these granitiods can shed some light on the tectonic evolution of this region. In this thesis, we have conducted geochronological and geochemical studies on eight selected granitic plutons to unravel their emplacement ages and petrogenesis. Furthermore, their tectonic implications were also discussed based on these results. In Neo-Proterozoic, our results suggest that two stages of magmatic activities were taken place in Central Qilian Block, GroupⅠ(750-790Ma) and Group Ⅱ(845- 930Ma). In Neo-Paleozoic, most granitic plutons were emplaced from Ordovician to Devonian, whereas granitiods with Triassic ages have also been discovered in South Qilian Belt. Inherited zircons with old ages of 1.7Ga, 2.1Ga and 2.7Ga have also been obtained in our study. Geochemical studies suggest that the Proterzoic granites were produced under high pressures and low temperatures from metamorphosed protolith rocks with compostions from basic to intermediate. This implies that some hot sources were underplated beneath lithosophere via mantle-derived magmatism. In combination with regional geological data, we propose that the Cental Qilian block was an old arc terrene during Precambrian, and two stage granitoids were formed under a back-arc extensional setting. Granitic rocks emplaced in early Paleozoic belong to strong peraluminous S-type granites, which were derived from metagreywacke having strong relationships with collisional process. Together with previous data, our results indicate that granitoids in Qilian Orogenic Belt formed during early Paleozoic have different petrogenesis and emplaced ages, which reflect that Qilian Orogenic Belt had underwent complicated multi-stage subduction-collusional processes in early Paleozoic. On the other hand, granitic rocks in South Qilian Belt with Triassic ages were formed by subduction of East Kulun during early Paleozoic-Late Mesozoic, which represent another orogenic episode in the northern margin of Tibetan Plateau.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Mesozoic-Cenozoic volcanic rocks are well exposed in Lhasa Terrane, southern Tibet. This research attempts to apply 40Ar/39Ar geochronology, major, trace element and Sr-Nd-O isotopic geochemistry data to constrain the spatio-temporal variations, the composition of source, geodynamic setting. The results indicate that Lhasa Terrane mainly went through three tectonic-magmatic cycle: (1) Phase of Oceanic subduction (140-80Ma). Along with the subducting beneath the Eurasian Plate of Neo-Tethys slab, the oceanic sediment and/or the subducting slab released fluids/melts to metasomatize the subcontinental lithospheric mantle, and induced the mantle wedge partially melt and produced the calc-alkaline continental arc volcanic rocks; (2) Phase of continental-continental collision. Following the subducting of the Neo-Tethys slab, the Indian Plate collided with the Eurasian Plate dragged by the dense Neo-Tethys oceanic lithosphere. The oceanic lithosphere detached from continental lithosphere during roll-back and break-off and the asthenosphere upwelled. The resulting conducted thermal perturbation leads to the melting of the overriding mantle lithosphere and produced the syn-collisional magmatism: the Linzizong Formation and dykes; (3) Following by the detachment of the Tethys oceanic lithosphere, the Indian Lithosphere subducted northward by the drive from the expanding of Indian Ocean. The dense Indian continental lithospheric mantle (±the thickened lower crust) break off, disturb the asthenosphere, and lead to the melting of the overriding mantle lithosphere, which has been metasomatized by the melts/fluids from the subducting oceanic/continental lithosphere and the asthenosphere, and produced the rift-related ultrapotassic rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive high to ultrahigh pressure metamorphic rocks are outcropped in the the Dabie-Sulu UHP orogenic belt. Disputes still exist about for protolith nature of metamorphic rocks, petrogenesis, tectonic setting, and influence on upper mantle during the Triassic deep subduction. In this study, a combined study of petrology, geochemistry, isotope geochemistry and zircon chronology was accomplished for high-grade gneisses in the basement of the ultrahigh-pressure metamorphic Rongcheng terrane to reveal protolith nature and petrogenesis of the gneisses and to disucss the magmatic succession along the northern margin of the Yangtze block in Neoproterozoic. Gneisses in the Rongcheng terrane are characterized by negative Nb, Ta, P and Ti anomalies, relatively low Sr/Y ratios and relatively high Ba/La, Ba/Nb and Ba/Zr ratios, mostly displaying geochemical affinity to Phanerozoic volcanic arc. Neoproterozoic protolith ages (0.7 ~ 0.8 Ga) and Paleoproterozoic average crustal residence time (1.92 ~ 2.21 Ga) favour a Yangtze affinity. The gneisses mostly display characteristics of enrichment of LREE, flat heavy rare earth elements (REE) patterns, moderately fractionation between LREE and HREE and slight negative or positive Eu anomalies, probably reflecting that melting took place in the middle to low crust (26 ~ 33 km), where amphibole fractionated from the melts and/or inherited from source material as major mineral phases in the source area. Sr-Nd isotopic composition of the gneisses supports this conclusion. According to εNd(t) and εHf(t) values, the gneisses can be divided into three groups. Gneisses of group I have the highest εNd(t) and εHf(t) values, corresponding to the range of -6 ~ -3 and -2.9 ~ 13.4, respectively. This suggests obvious influx of depleted mantle or juvenile crust in the formation of protoliths. Gneisses of group II have medium εNd(t) (-9 ~ -7) and εHf(t) values (-15.8 ~ -1.4), corresponding to relatively high TDM2(Nd) (1.99 ~ 2.31 Ga) and TDM2(Hf) (1.76 ~ 2.67 Ga) , respectively. This suggests these gneisses were formed by partial melting of Paleoproterozoic crust. Gneisses of group III have the lowest εNd(t) (-15 ~ -10) and εHf(t) values (-15.8 ~ -1.4), corresponding to the largest TDM2(Nd) (1.99 ~ 2.31 Ga) and TDM2(Hf) ( 1.76 ~ 2.67 Ga), respectively. This indicates that gneisses of group III were formed by remelting of Archean crustal material and further demonstrates existence of an Archean basement probably of the Yangtze affinity beneath the Rongcheng terrane. Gneisses of three groups have also certain different geochemical characteristics. Contents of REEs and trace elements reduce gradually from group I to group III. Zirconium saturation temperatures also show similar tendency. Compared to gneisses of group II and group III, gneisses of group I display geochemical feature similar to extensional tectonic setting, having relatively little influence by the source area. Therefore, geochemical characteristics for gneisses of group I can indictate that the protoliths of the Rongcheng gneisses formed in an extensional rifting tectonic setting. This conclusion is supported by the results of eclogites and gabbros previously reported in the Dabie-Sulu orogenic belt. Statistical results of the protolith ages of the Rongcheng gneisses show two age peaks around ~728 Ma and ~783 Ma with an about 50 Ma gap. Extensive magatism in abou 750 Ma along the northern margin of the Yangtze block can hardly be observed in the Rongcheng terrane. This phenomenon likely suggests discontinuous Neoproterozoic magmatism along the northern margin of the Yangtze block.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The South China craton was formed by the collision of the Yangtze and Cathaysia blocks during the Neoproterozoic Jiangnan orogeny (also termed as the Jingnin or Sibao orogeny in Chinese literature). Basement rocks within the Yangtze block consist mainly of Proterozoic sediments of the Lengjiaxi and Banxi Groups. U-Pb ages of detrital zircons obtained by the LA-ICP-MS dating technique imply that the deposition of the Lengjiaxi Group continued until the Neoproterozoic. The youngest detrital zircons suggest a maximum deposition age of ~830 Ma for the Lengjiaxi Group, consistent with the initiation time of the deposition of the overlying Banxi Group, likely indicating continuous deposition of these two groups and a short temporal hiatus (~10 Ma) between the Neoproterozoic sedimentary rocks distributed in the South China craton. Detrital zircons from both the Lengjiaxi and Banxi Groups have a wide range of εHf(t) values from -12 to 14.2 and a continuous Nd and Hf model age spectrum from ~820 Ma to 2200 Ma. Some grains have model ages ranging up to ca. 2.9-3.5 Ga, indicating that both juvenile mantle material and ancient crust provided sedimentary detritus. This is also consistent with the Nd isotopic signature of sedimentary rocks recorded in the Lengjiaxi Group, suggesting a back-arc tectonic setting. The Banxi Group has slightly enriched Nd isotopic signatures relative to the Lengjiaxi Group, implying a higher percentage of old continental material in the sedimentary source. Combined with previously published data, new results can help us to reconstruct the Neoproterozoic tectonic evolution of the South China craton. The age spectrum of detrital zircons and Nd-Hf isotopic composition suggests a two-stage collision: Between 1000 Ma to 870 Ma, a continental magmatic arc was build up along the eastern margin of the Yangtze block. Convergence led to continent-based back-arc extension, subsidence and formation of a back-arc basin. Detritus originating from arc-related magmatic and old basement rocks was transported into this back-arc basin resulting in formation of the Lengjiaxi Group and its equivalents. At around 870 Ma, a second (oceanic) arc was formed by extension of an inter-arc basin, subduction subsequently led to the first collision and the emplacement of the blueschist mélange. Accretion of the magmatic arc lasted until the closure of an oceanic basin between the Yangtze and Cathaysia blocks at about 830 Ma. Shortly after the collision, subsequent uplift, further extension of the former back-arc basin and post-collisional granitoid magmatism caused a tilting of the Lengjiaxi sediments. Between 830 Ma and 820 Ma, subsequent closure of the oceanic back-arc basin and formation of the Jiangnan orogen took place, leaving a regional unconformity above the Lengjiaxi Group. Above this unconformity the Banxi Group was immediately deposited during the post-tectonic stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Post-collisional, potassic igneous rocks are widely distributed in the Hoh Xil area of the northern Tibetan Plateau. Based on the field work, petrography, mineral chemistry, K-Ar geochronology, element and Sr-Nd-Pb isotope geochemistry, this thesis systematically studied the spatial and temporal distribution of the volcanic rocks, chemical characteristics, formation mechanism and partial melting mechanism of the magma source region, geodynamic setting of magmatism, as well as crustal assimilation and fractional crystallization (AFC). The results show that: 1. The Miocene (7.77-17.82 Ma) volcanic products dominantly are trachandesite and trachy, and subordinate rhyolites, associated with stike-slip faults and thrust faults, formed morphology of small lava platforms and cinder cones. 2. Phenocrysts in the lavas are augite, andesine, sanidine, calcic amphibole and subordinate orthopyroxene, biotite and Ti-Fe oxides, displaying typical quench texture. Equilibrium temperatures and pressures of clinopyroxene phenocrysts indicate the magma chamber is located in upper-middle crust. 3. Rhyolites are the products of crustal melting and fractionation of shoshonitic magmas. The source region of intermediate magmas is enriched continental lithospheric mantle, which contains residual minerals such as phlogopite, rutile and spinel, and enriched by subducted sediments during earlier multi-episodes of subduction. 4. Upwelling of asthenosphere provides heat for source region melting, and faults provide channels for magma eruption. 5. Northward underthrusting of Indian continental lithosphere and southward of backstop of Asian continental lithosphere resulted in upwelling of hot asthenosphere. Geochemical characteristics of the potassic magmatism in North Tibet are dominantly controlled by source region composition, partial melting, and crustal assimilation and fractional crystallization (AFC).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different conclusions from previous work are made from the geochemical study for the early Paleozoic volcanic rocks hosting massive sulfide deposits in the north Qilian Orogen. The main points are: (1)The geochemical characteristics of the basalts and rhyolites from the Baiyin deposit are not consistent with that of the volcanic rocks in the continental rift setting, but show the relationship with subduction. The basalts and rhyolites from the Baiyin deposit are probably individual tectonic slice piled by subduction, and there is no bimodal volcanic rock suite occurred in the Baiyin deposit. Zircon U-Pb dating constrains the magmatic emplacement of basalts and rhyolites at 475±10Ma and 453±12Ma, respectively. The basalts are characterized by enriched Th and Sr, and depleted Nb, Ta and Ti. They have relatively high Th/Nb ratios between 0.9 and 1.3. Their εNd(T) values vary from -1.2 to +3.4. The chemical and isotopic compositions display a typical subduction-related signature, and they suggest that an enriched component with the isotopic composition of EMII might have contributed to the generation of the Baiyin basalts. The basalts were likely formed in a mature island-arc or a volcanic arc built on comparatively young or thin continental crust in an active continental margin. The rhyoIites have low concentrations of LILE compared to the basalts. They do not seen to have a relationship with the basalts, because of their significantly higher εNd(T) values (+4.3~+7.7). The high and positive εNd(T) values also rule out their derivation from anatexis of the continental crust. A modeling study suggests that the source.of the Zhe-Huo and Xiaotieshan rhyolites is similar to boninite and IAT (island-arc tholeiite), and hence indicating an intra-oceanic arc environment. (2) The formation of the Shangliugou volcanic rocks from .Qilian area is also related to subduction. The basaltic andesite have low TiO_2(0.45~0.63%) and P_2O_5(0.04~0.09) content, and high Th/Nb ratios (0.3~0.6). They show flat REE patterns. Their εNd(T) values vary in a narrow range from +4.8 to +6.4. The chemical and isotopic compositions indicate that they are derived from a slightly depleted mantle source and are fromed in intra-island arc setting. The rhyolites show calc-alkaline trend. They show enriched LREE and fiat HREE patterns with obvious negative Eu anomaly. They have high Th/Ta ratios (5.0 ~ 11.7) and large negative εNd(T) values (-2.6 ~ -8.4). The rhyolites are formed in active continental margin and result from a mixed process of two endmembers, or crust assimilation. (3) The metal elements of the volcanic-hosted massive sulfide deposit have two sources, the copper and zinc are derived from rhyolitic magmas whereas the lead are probably related to old sediments overlying the rhyolites. (4) It is suggested here that the volcanic rocks hosting massive sulfide deposit in the north Qilian orogen, which are previously considered as a bimodal suite of Neo-proterozoic to middle Cambrian age in a continental rift, are virtually related to subduction magmatism in Ordovician age, and there might have no continental rift magmatism of Neo-proterozoic to middle Cambrian in the north Qilian.