180 resultados para Macro simulation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a batch file which describes the detailed structure and the corresponding physical process of Micro-Mesh Gaseous Structure (Micromegas) detector, the macro commands and the control structures based on the Garfield program has been developed. And using the Garfield program controlled by this batch file, the detector's gain and spatial resolution have been investigated under different conditions. These results obtained by the simulation program not only exhibit the influences of the mesh and drift voltage, the mixture gas proportion, the distance between the mesh cathode and the printed circuit board readout anode, and the Lines Per Inch of the mesh cathode on the gain and spatial resolution of the detector, but also are very important to optimize the design, shorten the experimental period, and save cost during the detector development. Additionally, they also indicate that the Garfield program is a powerful tool for the Micromegas detector design and optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new type of macro-micro-macro triple electrode has been fabricated, the steady-state currents of solution redox species have been observed at an ultramicroband electrode by linear potential scan voltammetry, and generation/collection experiments have al

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a theoretical model proposed in Part I (Zhu et al., 2001a) is used to simulate the behavior of a twin crank NiTi SMA spring based heat engine, which has been experimentally studied by Iwanaga et al. (1988). The simulation results are compared favorably with the measurements. It is found that (1) output torque and heat efficiency decrease as rotation speed increase; (2) both output torque and output power increase with the increase of hot water temperature; (3) at high rotation speed, higher water temperature improves the heat efficiency. On the contrary, at low rotation speed, lower water temperature is more efficient; (4) the effects of initial spring length may not be monotonic as reported. According to the simulation, output torque, output power and heat efficiency increase with the decrease of spring length only in the low rotation speed case. At high rotation speed, the result might be on the contrary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular dynamics method is used to simulate microcrack healing during heating or/and under compressive stress. A centre microcrack in Cu crystal would be sealed under compressive stress or by heating. The role of compressive stress and heating in crack healing was additive. During microcrack healing, dislocation generation and motion occurred. When there were pre-existing dislocations around the microcrack, the critical temperature or compressive stress necessary for microcrack healing would decrease, and, the higher the number of dislocations, the lower the critical temperature or compressive stress. The critical temperature necessary for microcrack healing depended upon the orientation of the crack plane. For example, the critical temperature for the crack along the (001) plane was the lowest, i.e. 770K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct numerical simulation is carried out for a spatially evolving supersonic turbulent boundary layer at free-stream Mach number 6. To overcome numerical instability, the seventh-order WENO scheme is used for the convection terms of Navier-Stokes equations, and fine mesh is adopted to minimize numerical dissipation. Compressibilty effects on the near-wall turbulent kinetic energy budget are studied. The cross-stream extended self-similarity and scaling exponents including the near-wall region are studied. In high Mach number flows, the coherence vortex structures are arranged to be smoother and streamwised, and the hair-pin vortices are less likely to occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micromachined accelerometer is a kind of inertial MEMS devices, which usually operate under intensive impact loading. The reliability of micromachined accelerometers is one of the most important performance indices for their design, manufacture and commer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable turbulent channel flow databases at several Reynolds numbers have been established by large eddy simulation (LES), with two of them validated by comparing with typical direct numerical simulation (DNS) results. Furthermore, the statistics, such as velocity profile, turbulent intensities and shear stress, were obtained as well as the temporal and spatial structure of turbulent bursts. Based on the LES databases available, the conditional sampling methods are used to detect the structures of burst events. A method to deterimine the grouping parameter from the probability distribution function (pdf) curve of the time separation between ejection events is proposed to avoid the errors in detected results. And thus, the dependence of average burst period on thresholds is considerably weakened. Meanwhile, the average burst-to-bed area ratios are detected. It is found that the Reynolds number exhibits little effect on the burst period and burst-to-bed area ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Monte- Carlo method is used to simulate the surface fatigue crack growth rate for offshore structural steel E36-Z35, and to determine the distributions and relevance of the parameters in the Paris equation. By this method, the time and cost of fatigue crack propagation testing can be reduced. The application of the method is demonstrated by use of four sets of fatigue crack propagation data for offshore structural steel E36-Z35. A comparison of the test data with the theoretical prediction for surface crack growth rate shows the application of the simulation method to the fatigue crack propagation tests is successful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a refined two-dimensional hybrid-model with self-consistent microwave absorption, we have investigated the change of plasma parameters such as plasma density and ionization rate with the operating conditions. The dependence of the ion current density and ion energy and angle distribution function at the substrate surface vs. the radial position, pressure and microwave power were discussed. Results of our simulation can be compared qualitatively with many experimental measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To accomplish laser-induced thermal loading simulation tests for pistons,the Gaussian beam was modulated into multi-circular beam with specific intensity distribution.A reverse method was proposed to design the intensity distribution for the laser-induced thermal loading based on finite element(FE) analysis.Firstly,the FE model is improved by alternating parameters of boundary conditions and thermal-physical properties of piston material in a reasonable range,therefore it can simulate the experimental resul...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations are performed to study adhesion and peeling of a short fragment of single strand DNA (ssDNA) molecule from a graphite surface. The critical peel-off force is found to depend on both the peeling angle and the elasticity of ssDNA. For the short ssDNA strand under investigation, we show that the simulation results can be explained by a continuum model of an adhesive elastic band on substrate. The analysis suggests that it is often the peak value, rather than the mean value, of adhesion energy which determines the peeling of a nanoscale material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive model of laser propagation in the atmosphere with a complete adaptive optics (AO) system for phase compensation is presented, and a corresponding computer program is compiled. A direct wave-front gradient control method is used to reconstruct the wave-front phase. With the long-exposure Strehl ratio as the evaluation parameter, a numerical simulation of an AO system in a stationary state with the atmospheric propagation of a laser beam was conducted. It was found that for certain conditions the phase screen that describes turbulence in the atmosphere might not be isotropic. Numerical experiments show that the computational results in imaging of lenses by means of the fast Fourier transform (FFT) method agree well with those computed by means of an integration method. However, the computer time required for the FFT method is 1 order of magnitude less than that of the integration method. Phase tailoring of the calculated phase is presented as a means to solve the problem that variance of the calculated residual phase does not correspond to the correction effectiveness of an AO system. It is found for the first time to our knowledge that for a constant delay time of an AO system, when the lateral wind speed exceeds a threshold, the compensation effectiveness of an AO system is better than that of complete phase conjugation. This finding indicates that the better compensation capability of an AO system does not mean better correction effectiveness. (C) 2000 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.