48 resultados para Macro and micro nutrients
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new type of macro-micro-macro triple electrode has been fabricated, the steady-state currents of solution redox species have been observed at an ultramicroband electrode by linear potential scan voltammetry, and generation/collection experiments have al
Resumo:
Problems involving coupled multiple space and time scales offer a real challenge for conventional frameworks of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HAD) at 720 degreesC for 6 min and micro-plasma oxidation (MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HAD/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, At and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the At surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HAD process. Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HAD/MPO treatment.
Resumo:
Cohesive zone characterizations of the interface between metal film and ceramic substrate at micro- and nano-scales are performed in the present research. At the nano-scale, a special potential for special material interface (Ag/MgO) is adopted to investigate the interface separation mechanism by using MD simulation, and stress-separation relationship will be obtained. At the micro-scale, peeling experiment is performed for the Al film/Al2O3 substrate system with an adhesive layer at the interface. Adhesive is a mixture of epoxy and polyimide with mass ratio 1:1, by which a brittle cohesive property is obtained. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling. The experimental result has a similar trend as modeling result for a weak adhesion interface case.
Resumo:
This book elucidates the methods of molecular gas dynamics or rarefied gas dynamics which treat the problems of gas flows when the discrete molecular effects of the gas prevail under the circumstances of low density, the emphases being stressed on the basis of the methods, the direct simulation Monte Carlo method applied to the simulation of non-equilibrium effects and the frontier subjects related to low speed microscale rarefied gas flows. It provides a solid basis for the study of molecular gas dynamics for senior students and graduates in the aerospace and mechanical engineering departments of universities and colleges. It gives a general acquaintance of modern developments of rarefied gas dynamics in various regimes and leads to the frontier topics of non-equilibrium rarefied gas dynamics and low speed microscale gas dynamics. It will be also of benefit to the scientific and technical researchers engaged in aerospace high altitude aerodynamic force and heating design and in the research on gas flow in MEMS
[1] Molecular structure and energy states | (21) | ||
[2] Some basic concepts of kinetic theory | (51) | ||
[3] Interaction of molecules with solid surface | (131) | ||
[4] Free molecular flow | (159) | ||
[5] Continuum models | (191) | ||
[6] Transitional regime | (231) | ||
[7] Direct simulation Monte-Carlo (DSMC) method | (275) | ||
[8] Microscale slow gas flows, information preservation method | (317) | ||
[App. I] Gas properties | (367) | ||
[App. II] Some integrals | (369) | ||
[App. III] Sampling from a prescribed distribution | (375) | ||
[App. IV] Program of the couette flow | (383) | ||
Subject Index | (399) |
Resumo:
An experimental study on ignition and combustion of single particles was conducted at normal gravity (1-g) and microgravity (l-g) for three high volatile coals with initial diameter of 1.5 and 2.0 mm, respectively. The non-intrusive twin-color pyrometry method was used to retrieve the surface temperature of the coal particle through processing the images taken by a color CCD camera. At the same time, a mathematical model considering thermal conduction inside the coal particle was developed to simulate the ignition process. Both experiments and modeling found that ignition occurred homogeneously at the beginning and then heterogeneously for the testing coal particles burning at l-g. Experimental results confirmed that ignition temperature decreased with increasing volatile content and increasing particle size. However, contradicted to previous studies, this study found that for a given coal with certain particle size, ignition temperature was about 50–80 K lower at l-g than that at 1-g. The model predictions agreed well with the l-g experimental data on ignition temperature. The criterion that the temperature gradient in the space away from the particle surface equaled to zero was validated to determine the commence of homogeneous ignition. Thermal conduction inside the particle could have a noticeable effect for determining the ignition temperature. With the consideration of thermal conduction, the critical size for the phase transient from homogeneous to heterogeneous is about 700 lm at ambient temperature 1500 K and oxygen concentration 0.23. 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
The structural and morphological evolution of mono-domains in thin films has been investigated for a series of liquid crystalline (LC) copolyethers. The copolyethers studied were synthesized by the reaction of 1-(4-hydroxy-4 ' -biphenylyl)-2-(4-hydroxyl-phenyl)propane (TPP) with 1,7-dibromoheptane and 1,11-undecane at different compositions (coTPPs-7/11). In contrast to the solution-cast thin films without annealing, which exhibit the isotropic homogeneous molecular orientation, mono-domains with a homeotropic alignment were found in coTPP-7/11(5/5) after the thin films were annealed in the high-temperature columnar phase (Phi '). Similar to the nucleation process in polymer crystallization, transmission electron microscopic observations show that small mono-domains appear in the initial stage of annealing, where molecules form a uniaxial in-plane chain orientation. With increasing annealing time, the molecular orientation gradually became tilted with respect to the substrate surface, and finally, a uniaxial homeotropic molecular orientation was achieved after a prolonged annealing time. The lateral size of mono-domains was found to increase continuously with annealing time and grew into a circular shape, indicating an isotropic lateral growth scheme which implies a hexagonal molecular packing proved by the electron diffraction experiments.
Resumo:
The abundance and biomass of ciliated protozoa and copepod nauplii were investigated at 21 grid stations and two anchored stations in the Laizhou Bay, Bohai Sea, China in June 1998. Dilution incubations were carried out to investigate micro-zooplankton grazing pressure at the anchored stations during spring tide and neap tide. The dominant species were Tintinnopsis amoyensis, T. chinglanensis, T. pallida and aloricate ciliates. A total of 13 species of tintinnids were found. The total abundance of ciliates and nauplii ranged from 30 to 2390 ind l(-1) at grid stations. Tintinnopsis amoyensis was the only ciliate found at the anchored stations and in concentrations which varied from 0 to 6700 ind l(-1). The spatial distribution of ciliates was patchy. Tintinnopsis amoyensis and T. pallida were distributed in the Weihe River mouth and Xiaoqinghe River mouth respectively. The aloricate ciliates, T. chinglanensis and Codonellopsis ostenfeldi dominated offshore in sequence. The water mixing process may affect the spatial pattern of the dominant ciliate species. The abundance and biomass of copepod nauplii were in the range of 0-140 ind l(-1) and 0-7 mu g C l(-1) respectively, with the peak appearing at grid station 15. The total biomass of ciliates and copepod nauplii was in the range of 1(.)5-25 mu g C l(-1). Water column biomass of ciliates and nauplii varied from 2(.)37 to 52(.)3 mg C m(-2). At the anchored stations, the phytoplankton growth rates ranged from undetectable to 0 21 d(-1) and micro-zooplankton grazing rates from 0 13 to 0(.)57 d(-1). The grazing pressure of micro-zooplankton were 12 to 43% of the chlorophyll standing stock and 84 to 267% of the chlorophyll (C) 2000 Academic Press.
Resumo:
With the development of petroleum exploration in Gaoyou Depression, both old and new areas have been the active exploration targets, so the study of petroleum accumulation is significant to the petroleum exploration in the study area and the integrated oil and gas accumulation theory. Based on hydrocarbon accumulation theory and systematical research methods and combined with the structural characteristics of Gaoyou Depression, Chenbao and East of Chenbao were selected as the study areas in this dissertation, oil and gas migration pathways, accumulation periods, as well as accumulation models were studied, and favorable exploration targets were proposed. There develop three sets source rocks, which are Tai-2 Member, Fu-2 Member and Fu-4 Member respectively. Tai-2 Member is the predominant source rock in the eastern part. Fu-2 Member mainly occurs in the northern slope, while Fu-4 Member develops in the deep depression. In the study area, oil mainly comes from Fu-2 Member of Liuwushe subsag. The lower limit of TOC is 0.4%, and active source rock mostly distributed in the south fault-step zone. The source rock in Liuwushe subsag began to generate hydrocarbon in the late of Dainan depositional stage and the threshold was 2300m. The macro and micro characteristics of reservoirs and the reservoir heterogeneity characteristics of the Fu-1 Member were studied systematicly. The results show that Fu-1 Member, which has better reservoir properties, are medium porosity-medium permeability reservoir. The reservoir permeability has good correlation with porosity connectivity. The reservoirs have strong dissolution, pores are mainly thin to medium throat, and throat radii are distributed concentratedly, the sorting is good and pore structures are homogeneous. Sandstone reservoirs whether in the plan view, interlayer or in layers have a certain degree of heterogeneity, in particular, the heterogeneity in layers directly affect and control the oil and gas migration and accumulation. By analyzing the lithology correlation of the fault walls, shale smear, cross section stress, the configuration of fracture active periods and hydrocarbon generation and expulsion periods and fuzzy comprehensive evaluation, the main faults sealing were evaluated. The results show that the faults in Chenbao and East of Chenbao had poor sealing properties in Sanduo period and could be used as the migration pathways at that time. After Sanduo period, the tectonic stress fields in the area changed largely, and, consequently, the fault properties converted from tensional shear to compressive shear, the faults changed progressively from close to open, so the faults sealing became better and were conducive to the preservation of oil and gas reservoirs. According to the seismic event suspension modes and profile configurations above and under the unconformities, combined with tectonic evolutions of the study areas, the unconformity types can be classified into truncation unconformity, overlapped unconformity and parallel unconformity and the distribution characteristics of unconformities in the plan view was also studied. The unconformity structure was divided into basal conglomerate, weathered clay and semi-weathered layer vertically in the study area and this kind of structure make unconformities to be effective oil and gas migration pathways and is significant to hydrocarbon accumulation in a parts of areas. With the analyses of typical oil and gas reservoirs in the study area, combined with the research results of pathway systems, hydrocarbon accumulation models were established and the oil and gas accumulation laws in Chenbao and East of Chenbao analyzed. The oil and gas came from Liuwushe subsag and Liuliushe subsag. The oil and gas from Liuwushe subsag mainly migrated from the structural high parts into the fault-step zone along strata in northeast direction, a part of them migrated upward into the fault-step zone and the Wubao low uplift along Wu-1 Fault in northeast direction. The oil and gas from Liuliushe subsag mainly migrated into the upper reservoirs through Wu-2 fault, and lesser oil and gas migrated into the fault-step zone because of the controls of cross-section orientation, depression center and the hydrocarbon formation tendency. The favorable exploration targets in Chenbao and East of Chenbao have been concluded: the southern fault-step zone is a favorable oil and gas accumulation zone of Liuwushe subsag, and they are fault block reservoirs where fault acted as the barriers, the main target intervals are Fu-1 Member and Fu-3 Member in palaeocene; Oil and gas in the middle and northern fault-step zone mainly laterally migrated from the south areas, and the main target interval is Fu-3 Member in palaeocene; Fu-1 Member and the reserviors above the Wubao subsag are still the focuses in future explorations. The results of this study have important guiding significance for the future oil and gas exploration.