14 resultados para MONOHYDRATE

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, {[Mn-2(CH3CO2)(4)(C10H8N2)(2)](H2O)-H-.}(n), is a one-dimensional coordination polymer with a ladder-like structure. Two Mn-II atoms, each coordinated by a chelating acetate ligand, are bridged by two bidentate acetate ligands to form a centrosymmetric [Mn-2(CH3CO2)(4)] unit. Two 4,4'-bipyridine ligands link the [Mn-2(CH3CO2)(4)] units through Mn-N bonds to generate a molecular ladder. The water O atom lies on a crystallographic twofold rotation axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, {[Mn-2(CH3CO2)(4)(C10H8N2)(2)](H2O)-H-.}(n), is a one-dimensional coordination polymer with a ladder-like structure. Two Mn-II atoms, each coordinated by a chelating acetate ligand, are bridged by two bidentate acetate ligands to form a centrosymmetric [Mn-2(CH3CO2)(4)] unit. Two 4,4'-bipyridine ligands link the [Mn-2(CH3CO2)(4)] units through Mn-N bonds to generate a molecular ladder. The water O atom lies on a crystallographic twofold rotation axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, 3-[(3,4-dihydro-2-methyl-4-oxopyrimidin-5-yl)methyl]-5-(2-hydroxyethyl)-4-methylthiazolium hexafluorophosphate monohydrate, C12H16N3O2S+. PF6-.H2O, oxythiamine is a monovalent cation with a neutral oxopyrimidine ring. The molecule assumes the F conformation, which is a common form for thiamine but which is substantially different from the unusual V conformation found in the chloride and hydrochloride salts of oxythiamine. The anion-bridging interaction, C-H . . . anion . . . pyrimidine, is emphasized as being important for stabilization of the F conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compounds, 3-[(4-amino-2-methyl-5-pyrimidinio)methyl] -5-(2-hydroxyethyl)-4-methylthiazolium(2+) 3-[(4-amino-2-mcthyl-5-pyrimidinyl)methyl]-5-(2-hydroxyethyl)-4-methylthiazolium( 1+) heptaiododimercurate dihydrate, (C12H18N4OS)(C12H17N4OS)[Hg2I7]. 2H(2)O, (I), and its dimethanol monohydrate, (C12H18N4OS)(C12H17N4OS)[Hg2I7]. 2CH(3)OH . H2O (2), a crystallographic centre of symmetry in (1) or a twofold axis in (2) is imposed between the protonated and deprotonated thiamine molecules, resulting in a statistically half-occupied proton attached at N1' of the pyrimidine ring. The Hg2I73- anion, residing on the centre of symmetry in (1) or on the twofold axis in (2), interacts with two thiamine molecules, each through a C2-H ... I ... pyrimidine-ring interaction. This bridging interaction is a characteristic of thiamine in the F conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the title compound, [Zn(C8H4O4)(C12H8N2)-(H2O)(3)]center dot H2O, displays a distorted octahedral coordination geometry, with two N atoms from the bidentate phenanthroline ligand, three O atoms from three meridional H2O molecules and one O atom from the monodentate phthalate ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asymmetric cyclopropanation of olefins was carried out with chiral copper-Schiff base complexes derived from copper acetate monohydrate, substituted salicylaldehydes and a chiral amino alcohol. Substituents on salicylaldehyde framework demonstrate a significant effect on the steroselectivities. Those with electron-withdrawing properties enhance the selectivities, whereas bulky sustituents in ortho position to the phenol hydroxy group decrease the selectivities. An ee of more than 98% was achieved for the reaction of styrene with diazoacetate. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new copper-(Schiff-base) complex, derived from (S)-2-amino-1,1-di(3,5-di-t-butylphenyl)propanol, 2-hydroxy-5-nitrobenzaldehyde and copper acetate monohydrate, was used as an efficient catalyst for the cyclopropanation of styrene with diazoacetates, affording ees of up to 98%. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new hydrogen-bonded dinuclear copper(II) coordination compound has been synthesized from the Schiff-base ligand 6-(pyridine-2-ylhydrazonomethyl)phenol (Hphp). The molecular structure of [Cu-2(php)(2)(H2O2)(2)(ClO4)](ClO4)- (H2O) (1), determined by single-crystal X-ray diffraction, reveals the presence of two copper(II) centers held together by means of two strong hydrogen bonds, with O center dot O contacts of only 2.60-2.68 angstrom. Temperature-dependent magnetic susceptibility measurements down to 3 K show that the two metal ions are antiferromagnetically coupled (J = -19.8(2) cm(-1)). This exchange is most likely through two hydrogen-bonding pathways, where a coordinated water on the first Cu, donates a H bond to the O atoms of the coordinated php at the other Cu. This strong O center dot H (water) bonding interaction has been clearly evidenced by theoretical calculations. In the relatively few related cases from the literature, this exchange path, mediated by a (neutral) coordinated water molecule, was not recognized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compounds (het)(PtCl6)2H(2)O 1, (het)(HgI4).H2O 2 (het = 2-(alpha-hydroxyethyl)thiamine) and (hpt)(Hg2Br6) 3 (hpt = 2-(alpha-hydroxypropyl)thiamine) have been prepared and structurally characterized by X-ray crystallography in order to study the influence of the anion and molecular conformation on the formation of supramolecular architectures that adsorb anionic species. Both het and hpt molecules adopt the usual S conformation for C2-substituted thiamine but differ from the F conformation for C2-free thiamine derivatives. Two types of characteristic ligand-anion complexation are observed, being of the forms C(6')-H...anion...thiazolium-ring (in 1 and 2) and N(4'1)-H...anion...thiazolium-ring (in 3). The reaction of het with PtCl62- or HgI42- gives a 1-D double-chain in 1, consisting of two hydrogen-bonded het chains, which are cross-linked by anions through hydrogen bonding and anion...aromatic-ring interactions, or a cationic 3-D framework in 2 formed by the stacking of hydrogen-bonded sheets with anion-and-water-filled channels. In the case of 3, hydrogen-bonded hpt dimers and HgBr62- anions form alternate cation-anion columns. A comparison with the cases of C2-free thiamine-anion complexes indicates that the change in molecular conformation results in novel supramolecular assemblies in 1 and 2 and an analogous architecture in 3, which also depends on the nature of the anions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of thiamine or thiamine monophosphate (TMP) with K2Pt(NO2)(4) afforded a metal complex, Pt(thiamine)(NO2)(3) (1), and two salt-type compounds, (H-thiamine)[Pt(NO2)(4)]. 2H(2)O (2) and (TMP)(2)[Pt(NO2)(4)]. 2H(2)O (3), which were structurally characterized by X-ray diffraction. In 1, the square-planar Pt2+ ion is coordinated to the pyrimidine N(1'), a usual metal-binding site, and three NO2- groups. The thiamine molecule exists as a monovalent cation in 1 and a divalent cation in 2 while the TMP molecule is a monovalent cation in 3. In each compound, thiamine or TMP adopts the usual F conformation and forms two types of host-guest-like interactions with anions, which are of the bridging forms, C(2)-H . . . anion . . . pyrimidine-ring and N(4'1)-H(...)anion(...)thiazolium-ring. In 3, there is an additional anion-bridging interaction between the pyrimidine and thiazolium rings of TMP, being of the form C(6')-H . . . anion . . . thiazolium-ring. The salts 2 and 3 show similar hydrogen-bonded cyclic dimers of thiamine or TMP between which the anions are held. Results are compared with those of the other thiamine-platinum complexes. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title compound, 3-[(4-amino-2-methyl-5-pyrimidin-1-io)methyl]-5-(2-hydroxyethyl)-4-methylthiazolium(2+) bis(tetrafluoroborate), C12H18N4OS2+. 2BF(4)(-), the divalent thiamine cation (in the F conformation) is associated with BF4- anions via two characteristic bridging interactions between the thiazolium and pyrimidinium rings, i.e. C-H . . . BF4- . . . pyrimidinium and N-H . . . BF4- . . . thiazolium interactions. Thiamine molecules are linked by N-H . . .O hydrogen bonds to form a helical chain structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title compound, catena-poly[dipotassium [[(oxalato-O,O')dioxomolybdate]-mu-oxo]monohydrate], oxalate acts as a bidentate ligand coordinating to each Mo atom through the two deprotonated carboxylate groups. The coordination polyhedron of molybdenum is distorted octahedral and there are infinite chains in the structure. Principal dimensions are: Mo-O(terminal) 1.560 (3) and 1.739 (3) Angstrom, Mo-O(bridging) 2.046 (4) and 2.410 (4) Angstrom, and Mo-O(carboxylate) 1.949 (3) and 2.113 (3) Angstrom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of thiamine iodide sesquihydrate has been determined by X-ray diffraction methods as a host-guest model for coenzyme-substrate interactions. The asymmetric unit contains two chemical units. Both the thiamine molecules A and B, which are crystallographically independent, assume the usual F conformation and have a disordered hydroxyethyl side chain. An iodide anion (or a water molecule) bridges the pyrimidine and thiazolium rings of molecule A (or B) by forming a hydrogen bond with the amino group and an electrostatic contact with the thiazolium ring to stabilize the molecular conformation. In the crystal the thiamine molecules self-associate to form a pipe-like polymeric structure, in which four thiamine hosts surround an iodide guest and hold it through C(2)-H...I hydrogen bonds and thiazolium...I electrostatic interactions. Crystal data: C12H17N4OS+.I- . 1.5 H2O, monoclinic, P2(1)/c, a = 12.585(2), b = 25.303(5), c = 12.030(2) angstrom, beta = 115.15(1)degrees, V = 3468(1) angtrom3, Z = 8, D(c) = 1.606 g cm-3, R = 0.045 for 3328 observed reflections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure analysis of {3-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-5-(2-hydroxyethyl)-4-methylthiazol}ium dithiocyanate reveals that there are two types of anion bridges between the two aromatic rings of the same thiamine which adopts the usual F conformation, one of which involves a contact between H(C2) on the thiazolium ring and the hydroxy O atom from a neighbouring molecule. The crystal packing shows a novel triple helical structure formed by strongly hydrogen-bonded thiamine-SCN- molecular chains.