210 resultados para MOMENTUM
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
On the basis of the two-continuum model of dilute gas-solid suspensions, the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers, when the Knudsen effect in the interphase momentum exchange is significant. The limits of the inertial particle deposition regime in the space of governing parameters are found numerically under the assumption of the slip and free-molecule flow regimes around particles. As a model problem, the flow structure is obtained for a supersonic dusty-gas point-source flow colliding with a hypersonic flow of pure gas. The calculations performed using the full Lagrangian approach for the near-symmetry-axis region and the free-molecular flow regime around the particles reveal a multi-layer structure of the dispersed-phase density with a sharp accumulation of the particles in some thin regions between the bow and termination shock waves.
Resumo:
The influence of the momentum addition, which may be associated with the average or fluctuation transverse component of the magnetic field or others, on the acceleration the solar wind or stellar wind is studied in a local streamtube. The results show that the larger the momentum addition the stronger the acceleration of the wind. For example, if the typical transverse magnetic field is about 0.1 of the longitudinal field, the velocity of the solar wind at 1 AU may be increased by 40%. The coronal hole may be considered as a streamtube, the presence of a high stream from the coronal hole may be explained by the existence of an average or fluctuation transverse magnetic field in the streamtube. A similar conclusion may be applied to the polar region, where the velocity of the solar wind will be larger than elsewhere as if there is a transverse component of magnetic field, as well as to the stellar wind. The influence of other parameters on the acceleration of the solar wind is also discussed. From the viewpoint of the solar wind mechanism, the present paper shows that the momentum addition in the subsonic flow region can increase the velocity of the solar wind at 1 AU.
Resumo:
The single ionization of an He atom by intense linearly polarized laser field in the tunneling regime is studied by S- matrix theory. When only the first term of the expansion of the S matrix is considered and time, spatial distribution, and fluctuation of the laser pulse are taken into account, the obtained momentum distribution in the polarization direction of laser field is consistent with the semiclassical calculation, which only considers tunneling and the interaction between the free electron and external field. When the second term, which includes the interaction between the core and the free electron, is considered, the momentum distribution shows a complex multipeak structure with the central minimum and the positions of some peaks are independent of the intensity in some intensity regime, which is consistent with the recent experimental result. Based on our analysis, we found that the structures observed in the momentum distribution of an He atom are attributed to the " soft" collision of the tunneled electron with the core.