245 resultados para MOLECULE REACTIONS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The gas-phase ion-molecule reactions of C-60 with the plasma generated from methyl acrylate under self-chemical ionization conditions were studied by use of a triple-quadrupole mass spectrometer. The adduct cation [C60C3H3O](+) and protonated molecular ion [C60H](+) were observed as the major product ions. The former adduct ion is formed by electrophilic reaction of C-60 with the ion [CH2=CHCO](+), a main fragment ion resulting from the methyl acrylate molecular ion [CH2=CHCOOCH3](+) through alpha cleavage. The latter ion is generated by proton transfer from protonated methyl acrylate to C-60. Semi-empirical quantum chemical calculations have been performed for the eight possible isomers of [C60C3H3O](+) at the Hartree-Fock level by use of the AMI method. The results show three types of cycloadducts as the most stable structures among the possible isomers.
Resumo:
The gas-phase ion-molecule reactions of C-60 with the methoxymethyl ion [CH3O=CH2](+) and the 1-hydroxyethyl ion [CH3CH=OH](+) generated under the self-chemical-ionization (self-CI) conditions of alkyl methyl ethers and primary alcohols were studied in the ion source of a mass spectrometer. The adduct ions [C60C2H5O](+) and protonated molecules [C60H](+) were observed as the major products of C-60 with the plasma of alkyl methyl ethers. On the contrary, the reactions of C-60 With the plasmas of primary alcohols produced few corresponding adduct ions. The AM1 semiempirical molecular orbital calculations were carried out on 14 possible structures. The calculated results showed that the most stable structure among the possible isomers of [C60C2H5O](+) is the [3+2] cycloadduct. According to experimental and theoretical results, the pathway for the formation of the adduct was presented.
Resumo:
Gas-phase ion-molecule reactions of buckminsterfullerene (C-60) with the ion systems generated from the self-chemical-ionization of alkyl methyl ethers(CH3OCnH2n+1, n =2 , 3, 4) were studied in the ion source of a mass spectrometer. The adduct cation [C60C2H5O](+) and protonated molecular ion [C60H](+) were observed as the major products, The former was produced by the reactions.of C-60 with the methoxymethyl ion [CH3O = CH2](+) , the latter corresponded to the proton transfer reactions from the protonated alkyl methyl ethers to C60 It is suggested that the [3+2] cycloadduct is the most favorable structure among the probable isomers with special chemical properties, Our investigation provides the guidance for the synthesis of this compound in condensed phase.
Resumo:
Gas-phase ion-molecule reactions of buckminsterfullerene (C-60) with the ion systems generated from the self-chemical ionization of alkyl methyl ethers (CH3OR, R = n-C2H5, n-C3H7, n-C4H9) were studied in the ion source of a mass spectrometer. The adduct cation [C60C2H5O](+) and protonated molecule [C60H](+) were observed as the major products. The former adduct ion was produced by the reactions of C-60 with the methoxymethyl ion [CH3OCH2](+), and the latter resulted from the proton transfer reactions from protonated alkyl methyl ethers to C-60 It is suggested that the [3+2] cycloadduct to a 6-6 bond of C-60 (a C-C bond common to two annulated six-membered rings) is the most favorable structure among the probable isomers of [C60C2H5O](+). (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Ion-molecule reactions of four isomeric cyclopropane derivatives were investigated under chemical ionization(CI) conditions, using methane, acetone and vinyl acetate as reagent gases, The methane positive-ion CI mass spectra of each of two isomer pairs 1,2 and 3,4 are identical, and so are the collision-induced dissociation (CTD) spectra of the protonated molecules of each of the two isomer pairs, The protonation reactions for the isomer pairs 1,2 and 3,4 occurred on the sites of the carboxyl groups and the R groups, respectively, Differences between isomers 1 and 2 are observed in their acetone (A) positive-ion CI mass spectra and in the CID spectra of their adduct ions ([M+H+A](+)), The adduct ions of compounds 2, 3 and 4 with protonated acetone and with protonated acetone dimer are observed in their CI mass spectra, However, only the adduct ions of compound 1 with protonated acetone appear in its CI mass spectrum, The protonated dimers of each of the four compounds are found in their vinyl acetate positive-ion CI mass spectra, and the CID spectra of these dimers for isomers 1 and 2 can also reflect their stereostructural difference. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Gas-phase ion-molecule reactions of buckminsterfullerene (C-60) with the acetyl cation CH3-C-+=O (m/z 43) and formylmethyl cation (CH2)-C-+-CH=O (m/z 43, or oxiranyl cation), generated from the self-chemical ionization of acetone and vinyl acetate, respectively, were studied in the ion source of a mass spectrometer. Adduct cations [C60C2H3O](+) (m/z 763) and protonated C-60, [C60H](+) (m/z 721), were observed as the major products. AM1 semiempirical molecular orbital calculations on the possible structures, stabilities and charge locations of the isomers of the adducts [C60C2H3O](+) were carried out at the restricted Hartree-Fock level. The results indicated that the sigma-addition product [C-60-COCH3](+) is the most stable adduct for the reaction of C-60 with CH3-C-+=O rather than that resulting from the [2+2] cycloaddition. The [2+3] cycloadduct and the sigma-adduct [C60CH2CHO](+) might be the most possible coexisting products for the reactions of C-60 with (CH2)-C-+-CH=O or oxiranyl cation. Other [C60C2H3O](+) isomers are also discussed. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
In chemical ionization mass spectrometry (CIMS) gas phase C-60(+) or C-60 can react with fragment ions from three chloromethane and four multichloroethane molecular ions via ion-molecule reactions. A dozen of gas-phase adduct ions of C-60 are observed, and most of them contain chlorine atoms. The results of the comparison and analysis show that the relative intensities of adductions are not directly proportional to the corresponding fragment ions in the MS of reagents,which implies that some fragment ions containing radicals are more reactive with C-60(+) or C-60. This indicates that the alkene-like C-60(+) or C-60 can act as a radical sponge in addition reactions.
Resumo:
Gas phase reactions of C-60 and C-70 with the ion system of acetone under chemical ionization conditions have been studied. C-60 and C-70 can react with acetyl and oxonium ions, which come from self-chemical ionization of acetone, to form adduct ions. In addition, C-60 and C-70 can accept protons to produce protonated ions. C-70 is more active in the above reactions than C-60 because of its stronger gas-phase basicity. A sigma-bond between C-60 and an acyl carbon atom can be formed to produce stable acetylated C-60 ions. The above results may be relevant to the acetylation reactions of C-60 in the condensed phase.
Resumo:
The dissociation routes of the adduct ions [M+CH3CO](+) formed by ion-molecule reaction of isomeric phenylenediamines with acetyl ion from acetone under chemical ionization condition were investigated by using collision-induced dissociation (CID) technique performed at ion kinetic energies of 40eV. The adduct ions are intermediate ion-neutral complexes.
Resumo:
Ion/molecule reactions of C-60 with vinyl acetate under chemical ionization conditions have been studied here. Compared with C2H3O+ from acetone, C2H3O+ from vinyl acetate undergoes the reactions more easily, a new heterocycle between C-60 and the studied ion is formed The generation of two sigma-bonds and little angle tensile force of pentatomic ring make it more stable.
Resumo:
Ion - molecule reactions of disubstituted benzene with ion system of acetone and deuterium - labelled acetone under chemical ionization conditions were examined and the fragmentation reactions of the adduct ions formed by the ion - molecule reactions were studied using collision - induced dissociation (CID) technique. It was found that the electron - releasing groups favored the adduct reactions, whereas the electron - withdrawing groups did not. The position and properties of substituted groups affected the relative abundance of the adduct ions. The fragmentation reaction of the adduct ion formed by ortho - phenylenediamine with acetyl ion was similar to the reductive alkylation reaction of amine in condensed phase.
Resumo:
The ion-molecule reactions of disubstituted benzenes under chemical ionization conditions with acetyl chloride as reagent gas were examined, and the fragmentation reactions of the adduct ions (mostly proton and acetyl ion adducts) were studied by collision-induced dissociation. Electron-releasing substituents favored the adduct reactions, and electron-withdrawing groups did not. The position and properties of substituting groups had an effect on the relative abundances of the adduct ions. Several examples of the ortho effect were observed. The fragmentation reaction of the adduct ions formed by ortho-benzenediamine with the acetyl ion was similar to the reductive alkylation reaction of amines in the condensed phase. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
The fragmentation properties of the product ions [M + 1](+), [M + 2](+) and [M + 3](+) formed by ion-molecule reaction of four cyclopropane derivatives with the ion system of CD3OD were investigated by using collision-induced dissocation technique. The experiment results indicated that the product ions were produced via the H/D exchange reaction between reactants and reactive reagent ions of CD3OD. There are two exchangable hydrogen atoms on the ring of compounds 1 and 2, and only one for compound 3 and 4.
Resumo:
Acetone and dimethyl ether( DME) have been shown to be reagent gases of exceptional utitlity and versatility for the characterization of a variety of class of organic compounds. The fragmentation mechanisms of the adduct product ions, formed by ion/molceule reaction of the substrate with the ionized gases, have been studied and substantiated by experiments with acetone-d(6) and DME-d(6).
Resumo:
The ion-molecule reactions in acetone were investigated which were induced under the chemical ionization. The structural information of the reaction products were obtained by using collision-induced dissociation (CID) technique performed at ion kinetic energies of 30eV.