3 resultados para MOLECULAR ADAPTATIONS

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organisms living in water are inevitably exposed to periods of hypoxia. Environmental hypoxia has been an important stressor having manifold effects on aquatic life. Many fish species have evolved behavioral, physiological, biochemical and molecular adaptations that enable them to cope with hypoxia. However, the molecular mechanisms of hypoxia tolerance in fish, remain unknown. in this study, we used suppression subtractive hybridization to examine the differential gene expression in CAB cells (Carassius auratus blastulae embryonic cells) exposed to hypoxia for 24 h. We isolated 2100 clones and identified 211 differentially expressed genes (e-value <= 5e-3; Identity > 45%). Among the genes whose expression is modified in cells, a vast majority involved in metabolism, signal transduction, cell defense, angiogenesis, cell growth and proliferation. Twelve genes encoding for ERO1-L, p53, CPO, HO-1, MKP2, PFK-2, cystatin B, GLUT1, BTG1, TGF beta 1, PGAM1, hypothetical protein F1508, were selected and identified to be hypoxia-induced using semi-quantitive RT-PCR and real-time PCR. Among the identified genes, two open reading frames (ORFs) encoding for CaBTG1 and Cacystatin B were obtained. The deduced amino acid sequence of CaBTG1 had 94.1%, 72.8%, 72.8%, 72.8%, 68.6% identity with that of DrBTG1, HsBTG1, BtBTG1, MmBTG1 and XIBTG1. Comparison of Cacystatin B with known cystatin B, the molecules exhibited 49.5 to 76.0% identity overall. These results may provide significant information for further understanding of the adaptive mechanism by which C. auratus responds to hypoxia. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although new empirical evidence shows that sympatric speciation has occurred in some species, there are few indisputable model organisms for this process of speciation. The two subspecies (Gymnocypris eckloni eckloni and G. e. scoliostomus) of the schizothoracine Gymnocypris fish species complex from a small glacier lake in the Tibetan Plateau, Lake Sunmcuo, fit several of the key characteristics of the sympatric speciation model. We used combined mitochondrial control region sequences and the cytochrome b gene (1894 bp) to address the phylogenetics and population genetics of 232 specimens of G. e. eckloni and G. e. scoliostomus, as well as all of its closely related sister species. We found that: (i) a total of four old lineages were uncovered in the widespread G. e. eckloni, of which only one was shown to be shared with all G. e. scoliostomus individuals and (ii) the new subspecies (G. e. scoliostomus) evolved in Lake Sunmcuo from the ancestral G. e. eckloni population within approximately 0.057 Ma. These two taxa of the species complex are morphologically distinct, and reproductive isolation is further suggested. Ecological disruptive selection based on morphological traits (e.g. mouth cleft characters) and food utilization may be a mechanism of incipient speciation of two sympatric populations within Lake Sunmcuo. This study provides the first genetic evidence for sympatric speciation in the schizothoracine fish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presumed pair relationships of intercontinental vicariad species in the Podophyllum group (Sinopodophyllum hexandrum vs. Podophyllum pelatum and Diphylleia grayi vs. D. cymosa) were recently, considered to be paraphyletic. In the present paper, the trnL-F and ITS gene sequences of the representatives were used to examine the sister relationships of these two vicariad species. A heuristic parsimony analysis based on the trnLF data identified Diphylleia as the basal clade of the other three genera, but provided poor resolution of their inter-relationships. High sequence divergence was found in the ITS data. ITS1 region, more variable but parsimonyuninformative. has no phylogenetic value, Sequence divergence of the ITS2 region provided abundant, phylogenetically informative variable characters. Analysis of ITS2 sequences confirmeda sister relationship between the presumable vicariad species, in spite of a low bootstrap support for Sinopodophyllum hexandrum vs. Podophyllum pelatum. The combined ITS2 and trnL-F data enforced a sister relationship between Sinopodophyllum hexandrum and Podophyllum pelatum with an elevated bootstrap support of 100%. Based on molecular phylogeny, the morphological evolution of this group was discussed. The self-pollination might have evolved from cross-fertilization two times in this group. The different pollination and seed dispersal systems of Sinopodophyllum hexandrum and Podophlyllum pelatum resulted from their adaptations to different ecological habitats. The divergence time of Sinopodophyllum hexandrum-Podophyllum pelatum is estimated to be 6.52+/-1.89 myr based on the ITS divergence. The divergence of this species pair predated or co-occurred with the recent uplift of the Himalayas 4-3 myr during the late Miocene and the formation of the alpine habitats. Sinopodophyllum hexandrum developed a host of specialized characters in its subsequent adaptation to the arid alpine surroundings. The present study confirmed the different patterns of species relationship between Asian-North American disjuncts. The isolation of plant elements between North America and eastern Asia must have been a gradual process, resulting in the different phylogenetic patterns and divergence times of the disjuncts.