88 resultados para MICROPHASE SEPARATION TRANSITION

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The change in the microphase separation transition (MST) temperature of a styrene-butadiene-styrene (SBS) triblock copolymer induced by the addition of polystyrene (PS) was investigated by small-angle X-ray scattering. It was found that the transition temperature was determined from the molecular weight (M(H)) Of the added PS in relation to that of the corresponding blocks (M(A)) in the copolymer. The MST temperature decreased with added PS if M(H)/M(A) < 1/4, while it increased with added PS when M(H)/M(A) > 1/4 Analysis of the theoretical expression based on the random phase approximation showed exactly the same tendency of change in the transition temperatures as that observed experimentally. The interaction parameter, chi(SB), obtained by nonlinear fitting of the scattering profiles of SBS/PS blends in the disordered state, was found to be a function of temperature and composition. Composition fluctuations were found to exist in SBS/PS blends, increasing with increasing addition of PS but diminishing with increasing molecular weight of the added PS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microphase separation, glass transition and crystallization of two series of tetrahydrofuran-methyl methacrylate diblock copolymers (PTHF-b-PMMA), one with a given PTHF block of M(n) = 5100 and the other with a given PTHF block of (M) over bar(n) = 7000, were studied in this present work. In the case of solution-cast materials, the microphase separation of the copolymer takes place first, with crystallization then gradually starting in the formed PTHF microphase. The T-g of the PMMA microphase shows a strong dependence on the molecular weight of the PMMA block, while the T-g of the PTHF microphase shows a strong dependence on the copolymer composition. The non-isothermal crystallization temperature (T-c) of the diblock copolymer decreases rapidly and continuously with the increase in the amorphous PMMA weight fraction; the lowest T-c of the copolymer is ca. 35 K lower than the T-c of the PTHF homopolymer. There also exists a T-c dependence on the molecular weight of the PTHF block. In addition, when the major component of the copolymer is PMMA, a strong dependence of the crystallizability of the copolymer on the molecular weight of the PTHF block is observed; the higher the molecular weight, then the stronger its crystallizability. The melting temperature of the block copolymer is dependent on the copolymer composition and the molecular weight of its crystallizable block. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the hole nucleation and growth induced by crystallization of thin crystalline-coil diblock copolymer films. Semicrystalline rodlike assemblies from neutral/selective binary solvent are used as seeds to nucleate crystallization at temperatures above the glass transition temperature (T-g) but below melting point (T-m). The crystallization of nanorods drives neighboring copolymer chains to diffuse into the growing nanorods. Depletion of copolymer chains yields hole nucleation and growth at the edge of the nanorods. Simultaneously, the polymer chains unassociated into the nanorods were oriented by induction from the free surface and the substrate, leading to limitation of the hole depth to the lamellar spacing, similar to20 nm. The holes, as well as the nanorods, grow as t(alpha), where t is the annealing time and a crossover in the exponent a. is found. The orientation and stretching of the copolymer chains by the surface and interface are believed to accelerate the crystallization, and in turn, the latter accelerates the growth rate of the holes. At T > T-m, the grains melt and the copolymer chains relax and flow into the first layer of the film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microphase separation of binary mixed A/B polymer brushes exposed to different solvents is studied using Single-Chain-in-Mean-Field simulations. Effects of solvent quality and selectivity, grafting density, composition, and chain-length asymmetry are systematically investigated, and diagrams of morphologies in various solvents are constructed as a function of grafting density and composition or chain-length asymmetry. The structure of the microphase segregated morphologies lacks long-range periodic order, and it is analyzed quantitatively Using Minkowski measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the surface morphology of symmetric poly(styrene)-block-poly(methyl methacrylate) diblock copolymer thin films after solvent vapor treatment selective for poly(methyl methacrylate). Highly ordered nanoscale depressions or striped morphologies are obtained by varying the solvent annealing time. The resulting nanostructured films turn out to be sensitive to the surrounding medium, that is, their morphologies and surface properties can be reversibly switchable upon exposure to different block-selective solvents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microphase transition in a styrene-butadiene-styrene triblock copolymer was studied by rheometric mechanical spectroscopy. A high-temperature-melt rheological transition from the highly elastic, nonlinear viscous behavior typical of a multiphase structure to linear viscous behavior with insignificant elasticity typical of a single-phase structure was observed. The transition temperature is determined according to the discontinuity of the rheological properties across the transition region, which agrees well with the results obtained from the small angle X-ray scattering data and the expectation of the random phase approximation theory. Maybe for the first time, microphase dissolution was investigated theologically. The storage modulus (G') and the loss modulus (G '') increase with time during the process. An entanglement fluctuation model based on the segmental density fluctuations is presented to explain the rheological behavior in this dissolution process. (C) 1997 John Wiley & Sons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase behavior of blends of poly(vinyl methyl ether) (PVME) with four styrene-butadienestyrene (SBS) triblock copolymers, being of various molecular weights, architecture, and compositions, was investigated by small-angle light scattering. Small-angle X-ray scattering investigation was accomplished for one blend. Low critical solution temperature (LCST) and a unique phase behavior, resembling upper critical solution temperature (UCST), were observed. It was found that the architecture of the copolymer greatly influenced the phase behavior of the blends. Random phase approximation theory was used to calculate the spinodal phase transition curves of the ABA/C and BAB/C systems; LCST and resembling UCST phase behavior were observed as the parameters of the system changed. Qualitatively, the experimental and the theoretical results are consistent with each other. (C) 1996 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the inverted phase formation and the transition from inverted to normal phase for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer in solution-cast films with thickness about 300 nm during the process of the solution concentrating by slow solvent evaporation. The cast solvent is 1, 1,2,2-tetrachloroethane (Tetra-CE), a good solvent for both blocks but having preferential affinity for the minority PMMA block. During such solution concentrating process, the phase behavior was examined by freeze-drying the samples at different evaporation time, corresponding to at different block copolymer concentrations, phi. As phi increases from similar to 0.1 % (nu/nu), the phase structure evolved from the disordered sphere phase (DS), consisting of random arranged spheres with the majority PS block as I core and the minority PMMA block as a corona, to ordered inverted phases including inverted spheres (IS), inverted cylinders (IC), and inverted hexagonally perforated lamellae (IHPL) with the minority PMMA block comprising the continuum phase, and then to the lamellar (LAM) phase with alternate layers of the two blocks, and finally to the normal cylinder (NC) phase with the majority PS block comprising the continuum phase. The solvent nature and the copolymer solution concentration are shown to be mainly responsible for the inverted phase formation and the phase transition process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The glass transition behaviour, microphase separation morphology and crystallization of poly(vinyl alcohol)-g-poly(methyl methacrylate) graft copolymers (PVA-g-PMMA) were studied. A lamellar microphase separation morphology was formed, even for a copolyme

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The comparison of aggregation behaviors between the branched block polyether T1107 (polyether A) and linear polyether (EO)(60)(PO)(40)(EO)(60) (polyether B) in aqueous solution are investigated by the MesoDyn simulation. Polyether A forms micelles at lower concentration and has a smaller aggregation number than B. Both the polyethers show the time-dependent micellar growth behaviors. The spherical micelles appear and then change to rod-like micelles with time evolution in the 10 vol% solution of polyether A. The micellar cluster appears and changes to pseudo-spherical micelles with time evolution in the 20 vol% solution of polyether A. However, the spherical micelles appear and change to micellar cluster with time evolution in the 20 vol% polyether B solution. The shear can induce the micellar transition of both block polyethers. When the shear rate is 1x10(5) s(-1), the shear can induce the sphere-to-rod transition of both polyethers at the concentration of 10 and 20 vol%. When the shear rate is lower than 1x10(5) s(-1), the huge micelles and micellar clusters can be formed in the 10 and 20 vol% polyether A systems under the shear, while the huge micelles are formed and then disaggregated with the time evolution in the 20 vol% polyether B system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The crystallization behaviors and morphology of asymmetric crystalline-crystalline diblock copolymers poly(ethylene oxide-lactide) (PEO-b-PLLA) were investigated using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and microscopic techniques (polarized optical microscopy (POM) and atomic force microscopy (AFM)). Both blocks of PEO5-b-PLLA(16) can be crystallized, which was confirmed by WAXD, while PEO block in PEO5-b-PLLA(30) is difficult to crystallize because of the confinement induced by the high glass transition temperature and crystallization of PLLA block with the microphase separation of the block copolymer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thin films of a symmetric crystalline-coil diblock copolymer of poly(L-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (T-g(PLLA)), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (T-c), the glass transition temperature of PS (T-g(PS)), the peak melting point of PLLA crystals (T-m(PLLA)), and the end melting point of PLLA crystals (T-m,end(PLLA)). When annealed at (T-c =) 80 degrees C (T-c < T-g(PS) < T-ODT, order-disorder transition temperature), 123 degrees C (T-g(PS) < T-c < T-m(PLLA) < T-ODT). 165 degrees C (T-g(PS) < T-m(PLLA) < T-c < T-m,end(PLLA) < T-ODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of blend composition on morphology, order-disorder transition (ODT), and chain conformation of symmetric ABA/AB copolymer blends confined between two neutral hard walls have been investigated by lattice Monte Carlo simulation. Only lamellar structure is observed in all the simulation morphologies under thermodynamic equilibrium state, which is supported by theoretical prediction. When the composition of AB diblock copolymer (phi) increases, both lamellar spacing and the corresponding ODT temperature increase, which can be attributed to the variation of conformation distribution of the diblock and the triblock copolymer chains. In addition, both diblock and triblock copolymer, chains with bridge conformation extend dramatically in the direction parallel to the surface when the system is in ordered state. Finally, the copolymer chain conformation depends strongly on both the blend composition and the incompatibility parameter chi N.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone)-based segmented polyurethanes (PCLUs) were prepared from poly(epsilon-caprolactone) diol, diisocyanates (DI), and 1,4-butanediol. The DIs used were 4,4'-diphenylmethane diisocyanate (MDI), 2,4-toluenediisocyanate (TDI), iso-phorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). Differential scanning calorimetry, small-angle X-ray scattering, and dynamic mechanical analysis were employed to characterize the two-phase structures of all PCLUs. It was found that HDI- and MDI-based PCLUs had higher degree of microphase separation than did IPDI- and TDI-based PCLUs, which was primarily due to the crystallization of HDI- and MDI-based hard-segments. As a result, the HDI-based PCLU exhibited the highest recovery force up to 6 MPa and slowest stress relaxation with increasing temperature. Besides, it was found that the partial damage in hard-segment domains during the sample deformation was responsible for the incomplete shape-recovery of PCLUs after the first deformation, but the damage did not develop during the subsequent deformation.