107 resultados para MEAN-FIELD MODELS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Based on a modified mean-field model, we calculate the Curie temperatures of Fe2+- and Co2+-doped diluted magnetic semiconductors (DMSs) and their dependence on the hole concentration. We find that the Curie temperatures increase with an increase in hole concentration and the relationship T(C)proportional to p(1/3) also approximately holds for Fe2+- and Co2+-doped systems with moderate hole concentration. For either low or high hole concentrations, however, the p(1/3) law is violated due to the anomalous magnetization of the Fe2+ and Co2+ ions, and the nonparabolic nature of the hole bands. Further, the values of T-C for Fe2+- and Co2+-doped DMSs are significantly higher than those for Mn2+-doped DMSs, due to the larger exchange interaction strength.
Resumo:
Based on the effective-mass model and the mean-field approximation, we investigate the energy levels of the electron and hole states of the Mn-doped ZnO quantum wires (x=0.0018) in the presence of the external magnetic field. It is found that either twofold degenerated electron or fourfold degenerated hole states split in the field. The splitting energy is about 100 times larger than those of undoped cases. There is a dark exciton effect when the radius R is smaller than 16.6 nm, and it is independent of the effective doped Mn concentration. The lowest state transitions split into six Zeeman components in the magnetic field, four sigma(+/-) and two pi polarized Zeeman components, their splittings depend on the Mn-doped concentration, and the order of pi and sigma(+/-) polarized Zeeman components is reversed for thin quantum wires (R < 2.3 nm) due to the quantum confinement effect.
Resumo:
We propose a procedure to determine the effective nuclear shell-model Hamiltonian in a truncated space from a self-consistent mean-field model, e.g., the Skyrme model. The parameters of pairing plus quadrupole-quadrupole interaction with monopole force are obtained so that the potential energy surface of the Skyrme Hartree-Fock + BCS calculation is reproduced. We test our method for N = Z nuclei in the fpg- and sd-shell regions. It is shown that the calculated energy spectra with these parameters are in a good agreement with experimental data, in which the importance of the monopole interaction is discussed. This method may represent a practical way of defining the Hamiltonian for general shell-model calculations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The properties of hadronic matter at beta equilibrium in a wide range of densities are described by appropriate equations of state in the framework of the relativistic mean field model. Strange meson fields, namely the scalar meson field sigma*(975) and the vector meson field sigma*(1020), are included in the present work. We discuss and compare the results of the equation of state, nucleon effective mass, and strangeness fraction obtained by adopting the TM1, TMA, and GL parameter sets for nuclear sector and three different choices for the hyperon couplings. We find that the parameter set TM1 favours the onset of hyperons most, while at high densities the GL parameter set leads to the most hyperon-rich matter. For a certain parameter set (e.g. TM1), the most hyperon-rich matter is obtained for the hyperon potential model. The influence of the hyperon couplings on the effective mass of nucleon, is much weaker than that on the nucleon parameter set. The nonstrange mesons dominate essentially the global properties of dense hyperon matter. The hyperon potential model predicts the lowest value of the neutron star maximum mass of about 1.45 M-sun to be 0.4-0.5 M-sun lower than the prediction by using the other choices for hyperon couplings.
Resumo:
By using the new experimental data of Lambda Lambda potential, this paper has performed a full calculation for strange hadronic matter with different strangeness contents as well as its consequences on the global properties of neutron star matter in relativistic mean field model. It finds that the new weak hyperon - hyperon interaction makes the equations of state much stiffer than the result of the previous strong hyperon-hyperon interaction, and even stiffer than the result without consideration of hyperon -hyperon interaction. This new hyperon -hyperon interaction results in a maximum mass of 1.75M(circle dot) ( where M-circle dot stands for the mass of the Sun), about 0.2-0.5M(circle dot) larger than the previous prediction with the presence of hyperons. After examining carefully the onset densities of kaon condensation it finds that this new weak version of hyperon -hyperon interaction favours the occurrence of kaons in comparison with the strong one.