290 resultados para MASS EXTINCTION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
本文基于华南、华北地区二叠纪—三叠纪陆生植物大化石和孢粉的数据库, 对中国二叠纪—三叠纪陆生植物的多样性变化进行了统计分析研究,并重点探讨了在二叠纪—三叠纪界线(Permian-Triassic Boundary,PTB )陆生植物是否与同期的海洋动物一样发生了同步的集群灭绝事件。 统计分析表明,华南、华北陆生植物大化石的分异度穿过PTB 均显示了较长时续(约37.8Ma)的下降和残存阶段,而孢粉化石在早三叠世的分异度则是上升的。总体上,陆生植物分异度穿过PTB 的变化较同期的海洋动物平稳缓慢。华南地区陆生植物大化石在晚二叠世末长兴期(Changhsingian)虽然伴随着最高的属灭绝率85.94% 和最低的属新生率28.12%,发生了最大的灭绝事件,但在晚二叠世早期和早三叠世的属的灭绝率也较高,分别为61.02% 和66.67% 。种的灭绝率在晚二叠世早期从早二叠世晚期的39%大幅度上升到80.36%,晚二叠世晚期达峰值97%,早三叠世稍降为93%,显然高于其它时段灭绝率范围(30—70%)。种和属的灭绝率呈现了同样的高峰阶段,从晚二叠世早期至早三叠世,时续为20.8 百万年(Ma)。基于更替率分析,华南地区陆生植物的高更替率事件分别发生在早二叠世晚期(93.75%)、早三叠世(90.92%)和晚三叠世(91.38%),但陆生植物在穿越早二叠世晚期—晚三叠世的整个过程中,更替率波动不大、比较平稳。华北地区陆生植物大化石穿越PTB 的灭绝率比华南地区低,属级高灭绝率事件集中在晚二叠世早期(67.31%)和晚二叠世晚期(63.89%), 时续为14.8Ma,种级高灭绝率事件与华南地区类似,集中在晚二叠世早期(85.67%)、晚二叠世晚期(90.86%)和早三叠世(80.28% )三个阶段,时续为20.8Ma 。显而易见,这比同期海洋动物集群灭绝的时续(3—11Ma )要长。 本文基于这些分析结果,仔细考虑了集群灭绝的4 个特点(即量值、广度、幅度和时续),认为华南、华北陆生植物在PTB 并未发生集群灭绝事件,而是发生了演化替代,即陆生植物穿过PTB 经历了大的植物群重组和新种的演化。总体上,中国二叠纪—三叠纪陆生植物中选择性灭绝非常明显,古生代占优势的种子蕨、真蕨类、木本石松类和楔叶类逐渐被早中生代比较进化的裸子植物和真蕨类植物所替代,陆生植物穿过PTB 显示了危机(灭绝)—残存—复苏—辐射的宏演化式样。
Resumo:
The largest mass extinction in the Phanerozoic happened at the end of the Permian. The microbialites formed in the extreme environments after the mass extinction has become a hotspot for geologists and paleontologists throughout the world. The dendroid microbialites that were described for the first time in 1999 from the Permian-Triassic boundary section at Laolongdong, Chongqing, have been studied by many geologists from China and overseas. Two important viewpoints about their origin have been proposed. Some researchers believed that they resemble Quaternary travertine shrubs in form, and may belong to microbialites. Some other researchers proposed that the dendroid structure is composed of clots formed by coccoidal cynaobacteria, and is microbialite. Our detailed survey on the section reveals that: (1) there is an interval of speckled “microbialite” in the section, and it underlies the dendroid “microbialite”, (2) the dendroid “microbialite” does not always have dendroid appearance; they are dendroid only in very local places; they are not dendroid in most places; for this reason, they are not comparable to recent tufa; (3) the volume of the dendroid structure greatly increases toward the top of the dendroid microbialite interval: accounting to 70% of the whole rock in the top part. This distribution pattern implies that the formation of this structure may be related to downward migration of the diagenetic fluid. Examination of thin sections reveals that the dendroid structure or point-like structure in the “microbialite” look as lighter areas in the thin sections and are composed of large blocky clear calcites containing scattered yellow dirty small calcite rhombi and irregular “points” of relict lime mudstone or wackestone or packstone. Their formation is by any one of the following two processes: (1) dissolution → filling of large blocky calcite; (2) dolomitization → dedolomitization → dissolution by meteoric fresh water → filling by large blocky calcites. It has been found that there are at least two sea-level falls during the P-T transition. As the sea level fall, the carbonate deposits came into supratidal environment, and suffered dolomitization caused by evaporative fluid or mixing water of sea water and meteoric water. Since the fluid migrated downward from the top of the deposits and in random pathway, the dolomitization formed dendroid or speckled dolomitic areas. As the deposits came into subaerial environments, the meteoric fresh water migrated along the dendroid or speckled dolomitic area with higher porosity, and dissolution happened, which caused the rock became spongy or alveolate. In later time, after the strata came into phreatic zone, large clear blocky calcites grew in and filled the pores in the spongy areas. The dendroid and speckled structure were formed in this way, rather than composed of clots formed by coccoid cyanobecteria. The microbial fossils in Laolongdong section include two types. The first is the tube-like cyanobecteria in middle Bed 3, which are generally less than 1 mm in length, taper toward one end, and are internally filled by microspars. They are straight or sinuous, with micritic wall 0.005~0.01 mm thick. Since this kind of microbial fossils are abundant in middle Bed 3, this rock belongs to microbialite. The second type occurs in Bed 5 and lower and middle Bed 6. They are irregular globular in shape, generally 0.2 ~ 0.5 mm in size, with several outward progresses, and internally filled by one layer of needle-like calcite cements on the wall and the large blocky calcite in the inner space. According to their shape and preservation way, it is inferred that this kind of fossils were formed from some kind of bacterial colony. The bacterial colony may be cuticle in composition, since it has some hardness as it is indicated by its resistance to deposit loading. These organisms discomposed during diagenetic time, and formed good porosity. In later diagenetic time, these pores were firstly cemented by needle-like calcites and later filled by large blocky calcites. So, the bacterial colony promoted the formation of dendroid and speckled structures. However, they did not always form such structures. On the other hand, even though no bacterial colony or other microbes or any kind of fossils were present, dendroid or speckled structures can form. Bed 4 of Laolongdong section contains abundant gastropods but no microbial fossils, and is not microbialite, even though it is speckled. The top of Bed 6 is dendroid, but contain no microbial fossils, and is not micrbialite.
Resumo:
We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell. On the basis of this C101 sensitizer, several DSC benchmarks measured under the air mass 1.5 global sunlight have been reached.
Resumo:
A high molar extinction coefficient heteroleptic polypyridyl ruthenium sensitizer, featuring a conjugated electron-rich selenophene unit in its ancillary ligand, has been synthesized and demonstrated as an efficient sensitizer in dye-sensitized solar cells. A nanocrystalline titania film stained with this sensitizer shows improved optical absorptivity, which is highly desirable for dye-sensitized solar cells with a thin photoactive layer. With preliminary testing, this sensitizer has already achieved a high efficiency of 10.6% measured under the air mass 1.5 global conditions.
Resumo:
This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.
Resumo:
The Ga1-xMnxSb samples were fabricated by the implantation of Mn ions into GaSb (1 0 0) substrate with mass-analyzed low-energy dual ion beam deposition system, and post-annealing. Auger electron spectroscopy depth profile of the Ga1-xMnxSb samples showed
Resumo:
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.
Resumo:
We present in this paper an iterative method using consistent mass matrix in axisymmetrical finite element analysis of hypervelocity impact. To retain the advantage of integration on an element-by-element basis which is at the heart of modern hydrocodes, we suggest that the first step should be to solve for accelerations at an advanced time step by using the lumped mass approach, then iterate using a consistent mass matrix to improve the estimate. Examples are given to show the improved resolution with the new method.
Resumo:
Measured mass flow rates and streamwise pressure distributions of gas flowing through microchannels were reported by many researchers. Assessment of these data is crucial before they are used in the examination of slip models and numerical schemes, and in the design of microchannel elements in various MEMS devices. On the basis of kinetic solutions of the mass flow rates and pressure distributions in microchannel gas flows, the measured data available are properly normalized and then are compared with each other. The 69 normalized data of measured pressure distributions are in excellent agreement, and 67 of them are within 1 +/- 0.05. The normalized data of mass flow-rates ranging between 0.95 and 1 agree well with each other as the inlet Knudsen number Kn (i) < 0.02, but they scatter between 0.85 and 1.15 as Kn (i) > 0.02 with, to some extent, a very interesting bifurcation trend.
Resumo:
The natural frequencies of a cantilever probe can be tuned with an attached concentrated mass to coincide with the higher harmonics generated in a tapping-mode atomic force microscopy by the nonlinear tip-sample interaction force. We provide a comprehensive map to guide the choice of the mass and the position of the attached particle in order to significantly enhance the higher harmonic signals containing information on the material properties. The first three eigenmodes can be simultaneously excited with only one carefully positioned particle of specific mass to enhance multiple harmonics. Accessing the interaction force qualitatively based on the high-sensitive harmonic signals combines the real-time material characterization with the imaging capability. (C) 2008 American Institute of Physics.
Resumo:
The probability distribution of lift-off velocity of the saltating grains is a bridge to linking microscopic and macroscopic research of aeolian sand transport. The lift-off parameters of saltating grains (i.e., the horizontal and vertical lift-off velocities, resultant lift-off velocity, and lift-off angle) in a wind tunnel are measured by using a Phase Doppler Particle Analyzer (PDPA). The experimental results show that the probability distribution of horizontal lift-off velocity of saltating particles on a bed surface is a normal function, and that of vertical lift-off velocity is an exponential function. The probability distribution of resultant lift-off velocity of saltating grains can be expressed as a log-normal function, and that of lift-off angle complies with an exponential function. A numerical model for the vertical distribution of aeolian mass flux based on the probability distribution of lift-off velocity is established. The simulation gives a sand mass flux distribution which is consistent with the field data of Namikas (Namikas, S.L., 2003. Field measurement and numerical modelling of acolian mass flux distributions on a sandy beach, Sedimentology 50, 303-326). Therefore, these findings are helpful to further understand the probability characteristics of lift-off grains in aeolian sand transport. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.
Resumo:
Heavily iron-implanted silicon was prepared by mass-analyzed low-energy dual ion beam deposition technique. Auger electron spectroscopy depth profiles indicate that iron ions are shallowly implanted into the single-crystal silicon substrate and formed 35 nm thick FexSi films. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is partially restored after as-implanted sample was annealed at 400degreesC. There are no new phases formed. Carrier concentration depth profile of annealed sample was measured by Electrochemical C-V method and indicated that FexSi film shows n-type conductivity while silicon substrate is p-type. The p-n junction is formed between FexSi film and silicon substrate showing rectifying effect. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In the present study, analyzed are the variation of added mass for a circular cylinder in the lock-in ( synchronization) range of vortex-induced vibration (VIV) and the relationship between added mass and natural frequency. A theoretical minimum value of the added mass coefficient for a circular cylinder at lock-in is given. Developed are semi-empirical formulas for the added mass of a circular cylinder at lock-in as a function of flow speed and mass ratio. A comparison between experiments and numerical simulations shows that the semi-empirical formulas describing the variation of the added mass for a circular cylinder at lock-in are better than the ideal added mass. In addition, computation models such as the wake oscillator model using the present formulas can predict the amplitude response of a circular cylinder at lock-in more accurately than those using the ideal added mass.
Resumo:
The influence of two secondary effects, rotatory inertia and presence of a crack, on the dynamic plastic shear failure of a cantilever with an attached mass block at its tip subjected to impulsive loading is investigated. It is illustrated that the consideration of the rotatory inertia of the cantilever and the presence of a crack at the upper root of the beam both increase the initial kinetic energy of the block required to cause shear failure at the interface between the beam tip and the tip mass, where the initial velocity has discontinuity Therefore, the influence of these two secondary effects on the dynamic shear failure is not negligible.