92 resultados para MANIPULATION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Sideband manipulation of population inversion in a three-level A atomic configuration is investigated theoretically. Compared with the case of a nearly monochromatic field, a population inversion between an excited state and a ground state has been found in a wide sideband intensity range by increasing the difference in frequency between three components. Furthermore, the population inversion can be controlled by the sum of the relative phases of the sideband components of the trichromatic pump field with respective to the phase of the central component. Changing the sum phase from 0 to pi, the population inversion between the excited state and the ground state can increase within nearly half of the sideband intensity range. At the same time, the sideband intensity range that corresponds to the system exhibiting inversion rho(00) > rho 11 also becomes wider evidently.
Resumo:
Trichromatic manipulation of Kerr nonlinearity in a three-level A atomic configuration is investigated theoretically. It is shown that for a weak monochromatic probe field, the enhanced Kerr nonlinearity can be achieved in multiple separate transparent windows due to interference effect of multiple two-photon Raman channels. Furthermore, the property of Kerr nonlinearity can be controlled by the sum of the relative phases of the sideband components of the trichromatic pump field compared to the central component.
Resumo:
The gonad is an essential organ for generating sperm and ova in vertebrates. This review describes several pilot studies on gonad gene manipulation and development in fish. With antisense RNA techniques, we suppressed the gonad development, and thus the fertility, of an antisense gonadotropin-releasing hormone (sGnRH) transgenic common carp. Then, using a tissue-specific exogenous gene excision strategy with sexual compensation, we knocked out the gonad-specific transgene. Under the control of the rainbow trout protamine promoter, the transgenic fish expressed the reporter gene eGFP specifically in the spermary. These results indicate that the fish gonad is a new model organ that can improve contemporary biotechnology experiments. Herein we discuss the potential of fish gonad manipulation for resolving important biosafety problems regarding transgenic fish generation and producing the new transgenic animal bioreactor.
Resumo:
Specimens of the calanoid copepod, Leptodiaptomus minutus, collected in June 1994 in oligotrophic: north temperate Crystal Lake, were infested with the stalked ciliate Epistylis lacustris. E. lacustris was highly specific to L. minutus and no other coexisting zooplankters were infested. Excluding nauplii, nearly 70% of copepods carried 1-20 ciliates, although the maximum load was as high as 250 ciliates. A lower percentage of nauplii were infested by the ciliate; those that were infested had a lower ciliate load than other copepod stages. Infestation by ciliates had no significant influence on the average egg number of female copepods. In a field experiment, higher copepod densities in enclosures resulted in a significantly higher infestation rate, but the ciliate load per individual copepod did not differ significantly among treatments.
Resumo:
Fishes, the biggest and most diverse community in vertebrates are good experimental models for studies of cell and developmental biology by many favorable characteristics. Nuclear transplantation in fish has been thoroughly studied in China since 1960s. Fish nuclei of embryonic cells from different genera were transplanted into enucleated eggs generating nucleo-cytoplasmic hybrids of adults. Most importantly, nuclei of cultured goldfish kidney cells had been reprogrammed in enucleated eggs to support embryogenesis and ontogenesis of a fertile fish. This was the first case of cloned fish with somatic cells. Based on the technique of microinjection, recombinant MThGH gene has been transferred into fish eggs and the first batch of transgenic fish were produced in 1984. The behavior of foreign gene was characterized and the onset of the foreign gene replication occurred between the blastula to gastrula stages and random integration mainly occurred at later stages of embryogenesis. This eventually led to the transgenic mosaicism. The MThGH-transferred common carp enhanced growth rate by 2-4 times in the founder juveniles and doubled the body weight in the adults. The transgenic common carp were more efficient in utilizing dietary protein than the controls. An "all-fish" gene construct CAgcGH has been made by splicing the common carp beta-actin gene (CA) promoter onto the grass carp growth hormone gene (gcGH) coding sequence. The CAgcGH-transferred Yellow River Carp have also shown significantly fast-growth trait. Combination of techniques of fish cell culture, gene transformation with cultured cells and nuclear transplantation should be able to generate homogeneous strain of valuable transgenic fish to fulfil human requirement in 21(st) century.
Resumo:
The optical manipulation of electron spins is of great benefit to solid-state quantum information processing. In this letter, we provide a comparative study on the ultrafast optical manipulation of single electron spin in the doped and undoped quantum dots. The study indicates that the experimental breakthrough can be preliminarily made in the undoped quantum dots, because of the relatively less demand.
Resumo:
Based on a multiparticle-state stimulated Raman adiabatic passage approach, a comprehensive theoretical study of the ultrafast optical manipulation of electron spins in quantum wells is presented. In addition to corroborating experimental findings [Gupta , Science 292, 2458 (2001)], we improve the expression for the optical-pulse-induced effective magnetic field, in comparison with the one obtained via the conventional single-particle ac Stark shift. Further study of the effect of hole-spin relaxation reveals that, while the coherent optical manipulation of electron spin in undoped quantum wells would deteriorate in the presence of relatively fast hole-spin relaxation, the coherent control in doped systems can be quite robust against decoherence. The implications of the present results on quantum dots will also be discussed. (c) 2005 American Institute of Physics.
Resumo:
We provide a general, necessary, and sufficient condition for the possibility of transforming a mixed bipartite Gaussian state with arbitrarily many modes to another one under arbitrary local Gaussian channels, which do not include classical communication. Moreover, by means of this condition we present a necessary criterion that can be used to check the possibility of a state transformation between two mixed Gaussian states. At the same time, we prove that our criterion can be reduced to the Eisert-Plenio criterion when the mode number is chosen as 1 per side.
Resumo:
We present the normal form of the covariance matrix for three-mode tripartite Gaussian states. By means of this result, the general form of a necessary and sufficient criterion for the possibility of a state transformation from one tripartite entangled Gaussian state to another with three modes is found. Moreover, we show that the conditions presented include not only inequalities but equalities as well.
Resumo:
Time-resolved Faraday rotation spectroscopy is currently exploited as a powerful technique to probe spin dynamics in semiconductors. We propose here an all-optical approach to geometrically manipulate electron spin and to detect the geometric phase by this type of extremely sensitive experiment. The global nature of the geometric phase can make the quantum manipulation more stable, which may find interesting applications in quantum devices.
Resumo:
Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.