5 resultados para Ludwig Riedel
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The optical interference method is a promising technique for measuring temperature, density, and concentration in fluids. The non-intrusive and non-invasive nature of its optical techniques to the measured section are its most outstanding features. However, the adverse experiment environment, especially regarding shaking and vibrating, greatly restricts the application of the interferometer. In the present work, an optical diagnostic system consisting of a Mach-Zehnder interferometer (named after physicists Ludwig Mach) and an image processor has been developed that increases the measuring sensitivity compared to conventional experimental methods in fluid mechanics. An image processor has also been developed for obtaining quantitative results by using Fourier transformation. The present facility has been used in observing and measuring the mass transfer process of a water droplet in EAFP protein solution under microgravity condition provided by the satellite Shi Jian No. 8.
Resumo:
Crack growth due to cavity growth and coalescence along grain boundaries is analyzed under transient and extensive creep conditions in a compact tension specimen. Account is taken of the finite geometry changes accompanying crack tip blunting. The material is characterized as an elastic-power law creeping solid with an additional contribution to the creep rate arising from a given density of cavitating grain boundary facets. All voids are assumed present from the outset and distributed on a given density of cavitating grain boundary facets. The evolution of the stress fields with crack growth under three load histories is described in some detail for a relatively ductile material. The full-field plane strain finite element calculations show the competing effects of stress relaxation due to constrained creep, diffusion and crack tip blunting. and of stress increase due to the instantaneous elastic response to crack growth. At very high crack growth rates the Hui-Riedel fields dominate the crack tip region. However. the high growth rates are not sustained for any length of time in the compact tension geometry analyzed. The region of dominance of the Hui-Riedel field shrinks rapidly so that the near-tip fields are controlled by the HRR-type field shortly after the onset of crack growth. Crack growth rates under various conditions of loading and spanning the range of times from small scale creep to extensive creep are obtained. We show that there is a strong similarity between crack growth history and the behaviour of the C(t) and C(t) parameters. so that crack growth rates correlate rather well with C(t) and C(t). A relatively brittle material is also considered that has a very different near-tip stress field and crack growth history.
Resumo:
Loss of function of DNA repair genes has been implicated in the development of many types of cancer. In the last several years, heterozygosity leading to haploinsufficiency for proteins involved in DNA repair was shown to play a role in genomic instability and carcinogenesis after DNA damage is induced, for example by ionizing radiation. Since the effect of heterozygosity for one gene is relatively small, we hypothesize that predisposition to cancer could be a result of the additive effect of heterozygosity for two or more genes critical to pathways that control DNA damage signaling, repair or apoptosis. We investigated the role of heterozygosity for Aim, Rad9 and Brad on cell oncogenic transformation and cell survival induced by 1 GeV/n Fe-56 ions. Our results show that cells heterozygous for both Aim and Rad9 or A tin and Brca1 have high survival rates and are more sensitive to transformation by high energy iron ions when compared with wild-type controls or cells haploinsufficient for only one of these proteins. Since mutations or polymorphisms for similar genes exist in a small percentage of the human population, we have identified a radiosensitive sub-population. This finding has several implications. First, the existence of a radiosensitive sub-population may distort the shape of the dose response relationship. Second, it would not be ethical to put exceptionally radiosensitive individuals into a setting where they may potentially be exposed to substantial doses of radiation. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: In recent years data from both mouse models and human tumors suggest that loss of one allele of genes involved in DNA repair pathways may play a central role in genomic instability and carcinogenesis. Additionally several examples in mouse models confirmed that loss of one allele of two functionally related genes may have an additive effect on tumor development. To understand some of the mechanisms involved, we examined the role of monoallelic loss or Atm and Brca1 on cell transformation and apoptosis induced by radiation. Methods: Cell transformation and apoptosis were measured in mouse embryo fibroblasts (MEF) and thymocytes respectively. Combinations of wild type and hemizygous genotypes for ATM and BRCA1 were tested in various comparisons. Results: Haploinsufficiency of either ATM or BRCA1 resulted in an increase in the incidence of radiation-induced transformation of MEF and a corresponding decrease in the proportion of thymocytes dying an apoptotic death, compared with cells from wild-type animals. Combined haploinsufficiency for both genes resulted in an even larger effect on apoptosis. Conclusions: Under stress, the efficiency and capacity for DNA repair mediated by the ATM/BRCA1 cell signalling network depends on the expression levels of both proteins.