63 resultados para Local Energy Decay
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An analysis on crack creep propagation problem of power-law nonlinear viscoelastic materials is presented. The creep incompressilility assumption is used. To simulate fracture behavior of craze region, it is assumed that in the fracture process zone near the crack tip, the cohesive stress sigma(f) acts upon the crack surfaces and resists crack opening. Through a perturbation method, i. e., by superposing the Mode-I applied force onto a referential uniform stress state, which has a trivial solution and gives no effect on the solution of the original problem, the nonlinear viscoelastic problem is reduced to linear problem. For weak nonlinear materials, for which the power-law index n similar or equal to 1, the expressions of stress and crack surface displacement are derived. Then, the fracture process zone local energy criterion is proposed and based on which the formulas of cracking incubation time t
Resumo:
Optimized trial functions are used in quantum Monte Carlo and variational Monte Carlo calculations of the Li2(X 1Σ+g) potential curve. The trial functions used are a product of a Slater determinant of molecular orbitals multiplied by correlation functions of electron—nuclear and electron—electron separation. The parameters of the determinant and correlation functions are optimized simultaneously by reducing the deviations of the local energy EL (EL Ψ−1THΨT, where ΨT denotes a trial function) over a fixed sample. At the equilibrium separation, the variational Monte Carlo and quantum Monte Carlo methods recover 68% and 98% of the correlation energy, respectively. At other points on the curves, these methods yield similar accuracies.
Resumo:
Song and Banner (2002, henceforth referred to as SB02) used a numerical wave tank (developed by Drimer and Agnon, and further refined by Segre, henceforth referred to as DAS) to study the wave breaking in the deep water, and proposed a dimensionless breaking threshold that based on the behaviour of the wave energy modulation and focusing during the evolution of the wave group. In this paper, two modified DAS models are used to further test the SB02's results, the first one (referred to MDAS1) corrected many integral calculation errors appeared in the DAS code, and the second one (referred to MDAS2) replaced the linear boundary element approximation of DAS into the cubic element on the free surface. Researches show that the results of MDAS1 are the same with those of DAS for the simulations of deep water wave breaking, but, the different values of the wavemaker amplitude, the breaking time and the maximum local average energy growth rate delta(max) for the marginal breaking cases are founded by MDAS2 and MDAS1. However, MDAS2 still satisfies the SB02' s breaking threshold. Furthermore, MDAS1 is utilized to study the marginal breaking case in the intermediate water depth when wave passes over a submerged slope, where the slope is given by 1 : 500, 1 : 300, 1 : 150 or 1 : 100. It is found that the maximum local energy density U increases significantly if the slope becomes steeper, and the delta(max) decreases weakly and increases intensively for the marginal recurrence case and marginal breaking case respectively. SB02's breaking threshold is still valid for the wave passing over a submerged slope gentler than 1 : 100 in the intermediate water depth.
Resumo:
首先利用模糊C-均值聚类算法在多特征形成的特征空间上对图像进行区域分割,并在此基础上对区域进行多尺度小波分解;然后利用柯西函数构造区域的模糊相似度,应用模糊相似度及区域信息量构造加权因子,从而得到融合图像的小波系数;最后利用小波逆变换得到融合图像·采用均方根误差、峰值信噪比、熵、交叉熵和互信息5种准则评价融合算法的性能·实验结果表明,文中方法具有良好的融合特性·
Resumo:
Compression, tension and high-velocity plate impact experiments were performed on a typical tough Zr41.2Ti13.8Cu10Ni12.5Be22.5 (Vit 1) bulk metallic glass (BMG) over a wide range of strain rates from similar to 10(-4) to 10(6) s(-1). Surprisingly, fine dimples and periodic corrugations on a nanoscale were also observed on dynamic mode I fracture surfaces of this tough Vit 1. Taking a broad overview of the fracture patterning of specimens, we proposed a criterion to assess whether the fracture of BMGs is essentially brittle or plastic. If the curvature radius of the crack tip is greater than the critical wavelength of meniscus instability [F. Spaepen, Acta Metall. 23 615 (1975); A.S. Argon and M. Salama, Mater. Sci. Eng. 23 219 (1976)], microscale vein patterns and nanoscale dimples appear on crack surfaces. However, in the opposite case, the local quasi-cleavage/separation through local atomic clusters with local softening in the background ahead of the crack tip dominates, producing nanoscale periodic corrugations. At the atomic cluster level, energy dissipation in fracture of BMGs is, therefore, determined by two competing elementary processes, viz. conventional shear transformation zones (STZs) and envisioned tension transformation zones (TTZs) ahead of the crack tip. Finally, the mechanism for the formation of nanoscale periodic corrugation is quantitatively discussed by applying the present energy dissipation mechanism.
Resumo:
We employ photoluminescence (PL) and time-resolved PL to study exciton localization effect in InGaN epilayers. By measuring the exciton decay time as a, function of the monitored emission energy at different temperatures, we have found unusual behaviour of the energy dependence in the PL decay process. At low temperature, the measured PL decay time increases with the emission energy. It decreases with the emission energy at 200K, and remains nearly constant at the intermediate temperature of 120K. We have studied the dot size effect on the radiative recombination time by calculating the temperature dependence of the exciton recombination lifetime in quantum dots, and have found that the observed behaviour can be well correlated to the exciton localization in quantum dots. This suggestion is further supported by steady state PL results.
Resumo:
A four-level decay model in KMgF3:Eu2+ is proposed. The decay profiles of the P-6(7/2) excited state of Eu2+ are biexponential, and the physical implication of each term in the fit equation responsible for the model is interpreted. The evidence obtained spectroscopically for supporting the model is presented. A new method to study energy transfer between Eu2+ and X3+ in KMgF3:Eu-X (X = Gd, Ce, Cr) is established on the basis of the proposed model.
Resumo:
Energy transfer processes between Eu2+ and Gd3+, Cr3+, Ce3+ ions in KMgF3, which are difficult to study spectroscopically, have been investigated by using the proposed four-level decay model of the P-6(7/2) excited state of the Eu2+ ion. Gd3+ and Ce3+ transfer its energy to the vibronic transition of the P-6(7/2) --> S-8(7/2) transition of Eu2+, whereas Cr3+ receive energy from Eu2+ via the d-d interaction. The energy transfer from the Eu2+ 4f(6)5d level to the Ce3+ 4f5d state is observed spectroscopically, and the energy transfer mechanism is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
How to refine a near-native structure to make it closer to its native conformation is an unsolved problem in protein-structure and protein-protein complex-structure prediction. In this article, we first test several scoring functions for selecting locally resampled near-native protein-protein docking conformations and then propose a computationally efficient protocol for structure refinement via local resampling and energy minimization. The proposed method employs a statistical energy function based on a Distance-scaled Ideal-gas REference state (DFIRE) as an initial filter and an empirical energy function EMPIRE (EMpirical Protein-InteRaction Energy) for optimization and re-ranking. Significant improvement of final top-1 ranked structures over initial near-native structures is observed in the ZDOCK 2.3 decoy set for Benchmark 1.0 (74% whose global rmsd reduced by 0.5 angstrom or more and only 7% increased by 0.5 angstrom or more). Less significant improvement is observed for Benchmark 2.0 (38% versus 33%). Possible reasons are discussed.
Resumo:
A potential energy model is developed for turbulent entrainment in the absence of mean shear in a linearly stratified fluid. The relation between the entrainment distance D and the time t and the relation between dimensionless entrainment rate E and the local Richardson number are obtained. An experiment is made for examination. The experimental results are in good agreement with the model, in which the dimensionless entrainment distance D is given by DBAR = A(i)(SBAR)-1/4(fBAR)1/2(tBAR)1/8, where A(i) is the proportional coefficient, S is the dimensionless stroke, fBAR is the dimensionless frequency of the grid oscillation, tBAR the dimensionless time.
Resumo:
In this paper, a complete set of MHD equations have been solved by numerical calculations in an attempt to study the dynamical evolutionary processes of the initial equilibrium configuration and to discuss the energy storage mechanism of the solar atmosphere by shearing the magnetic field. The initial equilibrium configuration with an arch bipolar potential field obtained from the numerical solution is similar to the configuration in the vicinity of typical solar flare before its eruption. From the magnetic induction equation in the set of MHD equations and dealing with the non-linear coupling effects between the flow field and magnetic field, the quantitative relationship has been derived for their dynamical evolution. Results show that plasma shear motion at the bottom of the solar atmosphere causes the magnetic field to shear; meanwhile the magnetic field energy is stored in local regions. With the increase of time the local magnetic energy increases and it may reach an order of 4×10^25 J during a day. Thus the local storage of magnetic energy is large enough to trigger a big solar flare and can be considered as the energy source of solar flares. The energy storage mechanism by shearing the magnetic field can well explain the slow changes in solar active regions.
Resumo:
In Paper I (Hu, 1982), we discussed the the influence of fluctuation fields on the force-free field for the case of conventional turbulence and demonstrated the general relationships. In the present paper, by using the approach of local expansion, the equation of average force-free field is obtained as (1+b)×B 0=(#x002B;a)B 0#x002B;a (1)×B 0#x002B;K. The average coefficientsa,a (1),b, andK show the influence of the fluctuation fields in small scale on the configurations of magnetic field in large scale. As the average magnetic field is no longer parallel to the average electric current, the average configurations of force-free fields are more general and complex than the usual ones. From the view point of physics, the energy and momentum of the turbulent structures should have influence on the equilibrium of the average fields. Several examples are discussed, and they show the basic features of the fluctuation fields and the influence of fluctuation fields on the average configurations of magnetic fields. The astrophysical environments are often in the turbulent state, the results of the present paper may be applied to the turbulent plasma where the magnetic field is strong.
Resumo:
Self-trapping, stopping, and absorption of an ultrashort ultraintense linearly polarized laser pulse in a finite plasma slab of near-critical density is investigated by particle-in-cell simulation. As in the underdense plasma, an electron cavity is created by the pressure of the transmitted part of the light pulse and it traps the latter. Since the background plasma is at near-critical density, no wake plasma oscillation is created. The propagating self-trapped light rapidly comes to a stop inside the slab. Subsequent ion Coulomb explosion of the stopped cavity leads to explosive expulsion of its ions and formation of an extended channel having extremely low plasma density. The energetic Coulomb-exploded ions form shock layers of high density and temperature at the channel boundary. In contrast to a propagating pulse in a lower density plasma, here the energy of the trapped light is deposited onto a stationary and highly localized region of the plasma. This highly localized energy-deposition process can be relevant to the fast ignition scheme of inertial fusion.
Resumo:
Ce3+ and B2O3 are introduced into erbium-doped Bi2O3-SiO2 glass to enhance the luminescence emission and optic spectra characters of Er3+. The energy transfer from Er3+ to Ce3+ will obviously be improved with the phonon energy increasing by the addition of B2O3. Here, the nonradiative rate, the lifetime of the I-4(11/2) -> I-4(3/2) transition, and the emission intensity and bandwidth of the 1.5 mu m luminescence with the I-4(13/2) -> I-4(5/2) transition of Er3+ are discussed in detail. The results show that the optical parameters of Er3+ in this bismuth-borate-silicate glass are nearly as good as that in tellurite glass, and the physical properties are similar to those in silicate glass. With the Judd-Ofelt and nonradiative theory analyses, the multiphonon decay and phonon-assisted energy-transfer (PAT) rates are calculated for the Er3+/Ce3+ codoped glasses. For the PAT process, an optimum value of the glass phonon energy is obtained after B2O3 is introduced into the Er3+/Ce3+ codoped bismuth-silicate glasses, and it much improves the energy-transfer rate between Er3+ I-4(11/2)-I-4(13/2) and Ce3+ F-2(5/2) -> F-2(7/2), although there is an energy mismatch. (c) 2007 Optical Society of America.
Resumo:
We present the results of a study that uses theoretical and experimental methods to investigate the characteristics of the upconversion luminescence of Tm3+/Yb3+ codoped TeO2-BiCl3 glass system as a function of the BiCl3 fraction. These glasses are potentially important in the design of upconversion fiber lasers. Effect of local environment around Tm3+ on upconversion fluorescence intensity was analyzed by theoretical calculations. The structure and spectroscopic properties were investigated in the experiments by measuring the Raman spectra, IR transmission spectra, and absorption and fluorescence intensities at room temperature. The results indicate that blue luminescence quantum efficiency increases with increasing BiCl3 content from 10 to 60 mol%, which were interpreted by the increase of asymmetry of glass structure, decrease of phonon energy and removing of OH- groups. (c) 2005 Elsevier B.V. All rights reserved.