51 resultados para Load measurement
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A moving-coil designed micro-mechanics tester, named as MicroUTM (universal testing machine), is in-house developed in this paper for micro-mechanics tests. The main component is a moving coil suspended in a uniform magnetic field through a set of springs. When a current passes through the coil, the electromagnetic force is proportional to the magnitude of the current, so the load can easily be measured by the current. The displacement is measured using a capacitive sensor. The load is calibrated using a Sartorius BP211D analytical balance, with a resolution/range of 0.01 mg/80 g or 0.1 mg/210 g. The displacement is calibrated using a HEIDENHAIN CT-6002 length gauge with an accuracy of +/- 0.1 mu m. The calibration results show that the load range is +/- 1 N and the displacement range is +/- 300 mu m. The noise levels of the load and displacement are 50 mu N and 150 nm, respectively. The nonlinearity of the load is only 0.2%. Several in-plane load tests of the MEMS micro-cantilever are performed using this tester. Experimental results, with excellent repeatability, demonstrate the reliability of the load measurement as well as the flexible function of this tester.
Resumo:
Thermally induced recovery of nanoindents in a CUAINi single crystal shape memory alloy was studied by nanoindentation in conjunction with a heating stage. Nanoindents formed by a Berkovich indenter at room temperature were heated to 40, 70 and 100 degrees C. Partial recovery was observed for the nanoindents. The recovery ratio depended on the heating temperature. Indentation of CuAlNi can induce inelastic deformation via dislocation motion and a stress-induced matensitic transformation. The percentages of dislocation-induced plastic strain would affect the thermal deformation of CuAlNi, because the induced dislocations could stabilize stress-induced martensite plates even when the temperature above austenite finish temperature, A(f). When the applied indentation load is low (less than 10,000 mu N), the shape recovery strain is predominant, compared with the dislocation-induced plastic strain. Therefore, the degree of indent recovery in the depth direction, delta(D), is high (about 0.7-0.8 at 100 degrees C).
Resumo:
The relationships between indentation responses and Young's modulus of an indented material were investigated by employing dimensional analysis and finite element method. Three representative tip bluntness geometries were introduced to describe the shape of a real Berkovich indenter. It was demonstrated that for each of these bluntness geometries, a set of approximate indentation relationships correlating the ratio of nominal hardness/reduced Young's modulus H (n) /E (r) and the ratio of elastic work/total work W (e)/W can be derived. Consequently, a method for Young's modulus measurement combined with its accuracy estimation was established on basis of these relationships. The effectiveness of this approach was verified by performing nanoindentation tests on S45C carbon steel and 6061 aluminum alloy and microindentation tests on aluminum single crystal, GCr15 bearing steel and fused silica.
Resumo:
Scanning probe microscopy was used to simultaneously determine the molecular chain structure and intrinsic mechanical properties, including anisotropic elastic modulus and friction, for lamellae of highly oriented high-density polyethylene (HDPE) obtained by the melt-drawn method. The molecular-scale image of the highly oriented lamellae by friction force microscopy (FFM) clearly shows that the molecular chains are aligned parallel to the drawing direction, and the periodicities along and perpendicular to the drawing direction are 0.26 and 0.50 nm, respectively. The results indicate that the exposed planes of the lamellae resulting from the melt-drawn method are (200), which is consistent with results of transmission electron microscopy and electron diffraction. Because of the high degree of anisotropy in the sample, coming from alignment of the molecular chains along the drawing direction, the measured friction force, F, determined by FFM is strongly dependent on the angle, theta, between the scanning direction and the chain axis. The force increases as theta is increased from 0 degrees (i.e., parallel to the chain axis) to 90 degrees (i.e., perpendicular to the chain axis). The structural anisotropy was also found to strongly influence the measurements of the transverse chain modulus of the polymer by the nanoindentation technique. The measured value of 13.8 GPa with transverse modulus was larger than the value 4.3 GPa determined by wide-angle X-ray diffraction, which we attributed to anisotropic deformation of the lamellae during nanoindentation measurements that was not accounted for by the elastic treatment we adopted from Oliver and Pharr. The present approach using scanning probe microscopy has the advantage that direct correlations between the nanostructure, nanotribology, and nanomechanical properties of oriented samples can be determined simultaneously and simply.
Resumo:
Nanoindentation technique and scanning force microscopy have been used to measure directly the polyethylene modulus along the chain axis. Single crystals of polyethylene were employed in order to obtain well-aligned chain segments. To minimize effects of scanner creep, a Z scan rate of 3 Hz was employed. The "X Rotate" value of 25 degrees was selected to eliminate effects of lateral tip motion. The results were analyzed by the Oliver -Pharr method for which direct observation and measurement of the contact area are not required. Considering the influence of tip roundness on the projected contact area, the nanoindentation results were analyzed by the Sawa method. The chain modulus obtained from the thinner polyethylene single crystal sample was 204 +/- 21 GPa by the Oliver-Pharr method and 168 +/- 17 GPa by the Sawa method. The lower values than expected were due to substrate effects and anisotropy of chain deformation during nanoindentation. An extrapolation of the chain modulus obtained by various strains to zero nanoindentation eliminated the effect of substrate and anisotropy of chain deformation. The corresponding chain modulus obtained from the thicker sample was 278 GPa by the Oliver-Pharr method and 267 GPa by the Sawa method, respectively, in better agreement with the value of 340 Cpa determined theoretically. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The thermal properties of a micro-electromechanical system sensor were analysed by a novel digital moire method. A double-layer micro-cantilever sensor (60 mu m long, 10 mu m width and 2 mu dm thick) was prepared by focused ion beam milling. A grating with frequency of 5000 lines mm- I was etched on the cantilever. The sensor was placed into a scanning electron microscope system with a high temperature device. The observation and recording of the thermal deformation of the grating were realised in real-time as the temperature rose from room temperature to 300 degrees C at intervals of 50 degrees C. Digital moire was generated by interference of the deformed grating and a digital virtual grating. The thermal properties including strain distribution of the sensor and the linear expansion coefficient of polysilicon were accurately measured by the phase-shifted moire patterns.
Resumo:
This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.
Resumo:
The phenomena of the 'piling up' and 'sinking-in' of surface profiles in conical indentation in elastic-plastic solids with work hardening are studied using dimensional and finite-element analysis. The degree of sinking in and piling up is shown to depend on the ratio of the initial yield strength Y to Young's modulus E and on the work-hardening exponent n. The widely used procedure proposed by Oliver and Pharr for estimating contact depth is then evaluated systematically. By comparing the contact depth obtained directly from finite-element calculations with that obtained from the initial unloading slope using the Oliver-Pharr procedure, the applicability of the procedure is discussed.
Resumo:
The Load/Unload Response Ratio (LURR) method is proposed for short-to-intermediate-term earthquake prediction [Yin, X.C., Chen, X.Z., Song, Z.P., Yin, C., 1995. A New Approach to Earthquake Prediction — The Load/Unload Response Ratio (LURR) Theory, Pure Appl. Geophys., 145, 701–715]. This method is based on measuring the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to the Coulomb Failure Stress change induced by Earth tides on optimally oriented faults. According to the method, the LURR time series usually climb to an anomalously high peak prior to occurrence of a large earthquake. Previous studies have indicated that the size of critical seismogenic region selected for LURR measurements has great influence on the evaluation of LURR. In this study, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. The Coulomb stress change before a hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. This new algorithm, by combining the LURR method with our choice of identified area with increased Coulomb stress, is devised to improve the sensitivity of LURR to measure criticality of stress accumulation before a large earthquake. Retrospective tests of this algorithm on four large earthquakes occurred in California over the last two decades show remarkable enhancement of the LURR precursory anomalies. For some strong events of lesser magnitudes occurred in the same neighborhoods and during the same time periods, significant anomalies are found if circular areas are used, and are not found if increased Coulomb stress areas are used for LURR data selection. The unique feature of this algorithm may provide stronger constraints on forecasts of the size and location of future large events.
Resumo:
The property of crystal depends seriously on the solution concentration distribution near the growth surface of a crystal. However, the concentration distributions are affected by the diffusion and convection of the solution. In the present experiment, the two methods of optical measurement are used to obtained velocity field and concentration field of NaClO3 solution. The convection patterns in sodium chlorate (NaClO3) crystal growth are measured by Digital Particle image Velocimetry (DPIV) technology. The 2-dimentional velocity distributions in the solution of NaClO3 are obtained from experiments. And concentration field are obtained by a Mach-Zehnder interferometer with a phase shift servo system. Interference patterns were recorded directly by a computer via a CCD camera. The evolution of velocity field and concentration field from dissolution to crystallization are visualized clearly. The structures of velocity fields were compared with that of concentration field.
Resumo:
We present density measurements from the application of interferometry and Fourier transform fringe analysis to the problem of nonstationary shock wave reflection over a semicircular cylinder and compare our experimental measurements to theoretical results from a CFD simulation of the same problem. The experimental results demonstrate our ability to resolve detailed structure in this complex shock wave reflection problem, allowing visualization of multiple shocks in the vicinity of the triple point, plus visualization of the shear layer and an associated vortical structure. Comparison between CFD and experiment show significant discrepancies with experiment producing a double Mach Reflection when CFD predicts a transitional Mach reflection.
Resumo:
A series of acoustic emission (AE) experiments of rock failure have been conducted under cyclic load in tri-axial stress tests. To simulate the hypocenter condition the specimens are loaded by the combined action of a constant stress, intended to simulate
Resumo:
In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.
Resumo:
We present a good alternative method to improve the tribological properties of polymer films by chemisorbing a long-chain monolayer on the functional polymer surface. Thus, a novel self-assembled monolayer is successfully prepared on a silicon substrate coated with amino-group-containing polyethyleneimine (PEI) by the chemical adsorption of stearic acid (STA) molecules. The formation and structure of the STA-PEI film are characterized by means of contact-angle measurement and ellipsometric thickness measurement, and of Fourier transformation infrared spectrometric and atomic force microscopic analyses. The micro- and macro-tribological properties of the STA-PEI film are investigated on an atomic force microscope (AFM) and a unidirectional tribometer, respectively. It has been found that the STA monolayer about 2.1-nm thick is produced on the PEI coating by the chemical reaction between the amino groups in the PEI and the carboxyl group in the STA molecules to form a covalent amide bond in the presence of N,N'-dicyclohexylcarbodiimide (DCCD) as a dehydrating regent. By introducing the STA monolayer, the hydrophilic PEI polymer surface becomes hydrophobic with a water contact angle to be about 105degrees. Study of the time dependence of the film formation shows that the adsorption of PEI is fast, whereas at least 24 h is needed to generate the saturated STA monolayer. Whereas the PEI coating has relatively high adhesion, friction, and poor anti-wear ability, the STA-PEI film possesses good adhesive resistance and high load-carrying capacity and anti-wear ability, which could be attributed to the chemical structure of the STA-PEI thin film. It is assumed that the hydrogen bonds between the molecules of the STA-PEI film act to stabilize the film and can be restored after breaking during sliding. Thus, the self-assembled STA-PEI thin film might find promising application in the lubrication of micro-electromechanical systems (MEMS).