8 resultados para Load Flow
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
本文所介绍的水下机械手液压控制系统为一典型的具有变回油压力封闭式系统。文中阐述了此种系统液压动力机构的设计原理及静、动态参数的分析计算方法。对于在变回油压力下,由四通阀控制的非对称油缸的静态特性进行了详细的分析。给出了在不同回油压力下,不同面积比的非对称油缸、阀的负载压降及最大空载流量的变化规律。这对于确定水下机械手的液压动力机构的参数提供了依据。
Resumo:
本文提出一个计算网损微增率的新途径。应用网络拓扑方法得到的网损修正值的直接数学表达式,不仅可利用系统潮流进行直接计算,而且有明确的物理概念,可用于实时经济调度。文中给出了计算方法和实例。
Resumo:
For metal-matrix composites (MMCs), interfacial debonding between the ductile matrix and the reinforcing hard inclusions is an important failure mode. A fundamental approach to improving the properties of MMCs is to optimize their microstructure to achieve maximum strength and toughness. Here, we investigate the flow stress of a MMC with a nanoscale microstructure similar to that of bone. Such a 'biomorphous' MMC would be made of staggered hard and slender nanoparticles embedded in a ductile matrix. We show that the large aspect ratio and the nanometer size of inclusions in the biomorphous MMC lead to significantly improved properties with increased tolerance of interfacial damage. In this case, the partially debonded inclusions continue to carry mechanical load transferred via longitudinal shearing of the matrix material between neighboring inclusions. The larger the inclusion aspect ratio, the larger is the flow stress and work hardening rate for the composite. Increasing the volume concentration of inclusion also makes the biomorphous MMC more tolerant of interfacial damage.
Resumo:
We investigate plastic deformation of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass using depth sensing nanoindentation. Numerous serrations in the load-displacement curves during indentation, shear bands and pile-ups around the indent were observed. The results revealed that the serrated plastic flow behaviour in this alloy depends strongly on the indentation strain rate.
Resumo:
A depth-integrated two-dimensional numerical model of current, salinity and sediment transport was proposed and calibrated by the observation data in the Yangtze River Estuary. It was then applied to investigate the flow and sediment ratio of the navigati
Resumo:
Vortex shedding is the main characteristics of bluff bodies, which will cause the bluff bodies to vibrate and sometimes result in the structures failure. In this paper the wake flow characteristics of 21 bluff bodies with rectangular, rounded and angular profiles and the length-to-width ratio in the range of 4~12 were deeply studied by Micro ADV. Two parameters, namely the relative intensity of the load due to Karman vortices and the large scale vortex intensity, were introduced to measure the wake flow intensity. Generally, the values of these parameters for different bluff bodies are consistent with each other. The experiment results showed that the key factor affecting the wake flow characteristics is the bluff edge, especially the leading edge geometry. The wake flow in bluff bodies with rounded edge profiles has more regular vortices and becomes more periodic than that in bluff bodies with rectangular ones. A bluff body with angular edged profile was witnessed to have not only small wake loading but small hydraulic resistance also.
Resumo:
Phosphorus removal performance and a possible mechanism for the phosphorus removal from an eutrophic lake water were investigated using a medium-scale integrated vertical constructed wetland (combined vertical and reverse-vertical systems) from April, 11, 2001 to September, 28, 2004. Environmental factors affecting phosphorus removal and release profiles were monitored simultaneously under hydraulic loads from 400 to 2000 mm per day. The phosphorus removal rate varied with the environmental conditions. The removal rate for acidic influent water was superior to that for alkaline influent water. The substrate in the wetland chamber acted as a buffer to regulate the pH value of the water sample. As regards the water temperature, no significant differences were observed for the removal rate of total phosphorus (TP) and soluble reactive phosphorus (SRP) between low (lower than 15 degrees C) medium (16-25 degrees C) and high temperature (higher than 26 degrees C) conditions. Under a hydraulic load of 400 mm per day, the removal rate reached over 70%, the highest value achieved in this work. In addition, the highest hydraulic load of 2000 mm/d did not result in the lowest removal rate, as had been expected. After a two-year high hydraulic load test, the removal rate decreased significantly. Phosphorous release from the substrate was examined using a spatial sampling method. Depth profiles of total phosphorus and different states of phosphorus present in the substrate were recorded. This further study demonstrated that binding of phosphorus by iron and calcium might be another major factor in the removal and release of TP and SRP in this wetland system. The distribution of the speciated phosphorus showed that the amount of phosphorus captured in the substrate of the down-flow chamber was significantly higher than that captured in the up-flow chamber, suggesting that the up-flow chamber was the main source of phosphorus release in this constructed wetland.
Resumo:
Two sets of small scale systems of staged, vertical-flow constructed wetlands (VFCW) were operated in a greenhouse to study the purification of dibutyl phthalate (DBP) in admeasured water. Each system consisted of two chambers in which water flowed downward in chamber I and then upward in chamber 2. The systems were intermittently fed with wastewater under a hydraulic load of 420 mm(.)d(-1). The measured influent concentrations of DBP in the experimental system were 9.84 mg(.)l(-1), while the other system was used as a control and received no DBP. Effluent concentrations of the treated system averaged 5.82 mug(.)l(-1) and were far below the Chinese DBP discharge standard of less than or equal to0.2 mg(.)l(-1). These results indicate the potential purification capacity of this new kind of constructed wetland in removing DBP from a polluted water body.