3 resultados para Learning Orientation Activity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, ZnO nanowire arrays with different orientations were prepared. Confocal laser scanning microscopy (CLSM) and field- emission scanning electron microscope (FE- SEM) technique were employed for understanding the disparities in antibacterial activity between different orientations of ZnO nanoarrays. The effects of the different planes of ZnO nanowire were also discussed for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In our screening of marine Streptomycetes for bioactive principles, two novel antitumor antibiotics designated as chinikomycins A (2a) and B (2b) were isolated together with manumycin A (1), and their structures were elucidated by a detailed interpretation of their spectra. Chinikomycins A (2a) and B (2b) are chlorine-containing aromatized manumycin derivatives of the type 64-pABA-2 with an unusual para orientation of the side chains. They exhibited antitumor activity against different human cancer cell lines, but were inactive in antiviral, antimicrobial, and phytotoxicity tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to explore the inhibitory mechanism of coumarins toward aldose reductase (ALR2), AutoDock and Gromacs software were used for docking and molecular dynamics studies on 14 coumarins (CM) and ALR2 protease. The docking results indicate that residues TYR48, HIS110, and TRP111 construct the active pocket of ALR2 and, besides van der Waals and hydrophobic interaction, CM mainly interact with ALR2 by forming hydrogen bonds to cause inhibitory behavior. Except for CM1, all the other coumarins take the lactone part as acceptor to build up the hydrogen bond network with active-pocket residues. Unlike CM3, which has two comparable binding modes with ALR2, most coumarins only have one dominant orientation in their binding sites. The molecular dynamics calculation, based on the docking results, implies that the orientations of CM in the active pocket show different stabilities. Orientation of CM1 and CM3a take an unstable binding mode with ALR2; their conformations and RMSDs relative to ALR2 change a lot with the dynamic process. While the remaining CM are always hydrogen-bonded with residues TYR48 and HIS110 through the carbonyl O atom of the lactone group during the whole process, they retain the original binding mode and gradually reach dynamic equilibrium.