116 resultados para Leaf-venation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

上新世时期是地球环境发展变化过程中由温暖的中新世向冰期-间冰期交替出现的更新世的过渡时期,研究上新世的气候有助于研究现代全球气候变化趋势。我国上新世植物群研究不多,尤其缺乏早上新世植物群的研究。在研究化石植物群的过程中,叶角质层的信息通常被忽视。迄今,我国古气候的定量研究主要集中在山东山旺和云南地区,研究的主要是中新世和晚上新世的古气候,早上新世气候的定量研究国内外都未见报道。 本论文以采自浙江中部嵊州地区硅藻土中的植物叶和果实为材料,通过光学显微镜、荧光显微镜和扫描电镜观察,对提取的化石叶角质层和叶结构进行研究,对比研究现代相关类群植物的叶片,确定了化石植物类群计15科24属(或亚科)34种。同时参照现代植物分布,恢复了早上新世嵊州地区古植被情况,进一步运用共存分析(Co-existence Approch)定量重建了当时的古气候,得到古年均温、古年较差和古年降水量等7个参数。 研究表明,叶结构和叶角质层可以应用于化石植物类群的鉴定。光学显微镜和荧光显微镜下可以获得的信息有:气孔、表皮细胞形状及大小、表皮细胞垂周壁、分泌结构、表皮毛或毛基等。扫描电镜观察的是叶表皮细胞表面的情况,如细胞外壁是否被蜡质以及蜡质的交结情况,气孔外壁是否增厚呈环等。 经化石植物类群鉴定,早上新世(约4Ma)嵊州地区植被属亚热带常绿阔叶林。推测:该地区当时存在一个较大的湖泊,湖泊边缘水中生长有菱角,湖泊周边可能有海拔超过1400m的山地。 常绿阔叶林主要成分是壳斗科植物,其中青冈属植物可能是建群植物。自低海拔到高海拔地区都有分布的是:栎属、栗属、桤木属植物,青杨梅。低海拔地区(<600m)分布的植物有:海南锥,樟。中低海拔地区(300-1000m)分布着:柯属、黄杨属植物,水青冈,海南油丹,江南油杉,福建柏。中高海拔地区(>700m)分布有:高山栎、黄肉楠属植物,米心水青冈,榉树,建始槭,天台鹅耳枥和昌化鹅耳枥。除了上述类群,林中还散布着鼠李属、杜鹃花属和冬青属的植物,豆科崖豆藤属植物则缠绕一些较大乔木生长。另外,在一些土壤、有机质易堆积的洼地生长有竹林,山地贫瘠的地方生长着柏属植物。 嵊州早上新世化石植物群反映的植被同浙江地区现代植被相似。第三纪浙江地区从针叶林或阔叶树为主的针-阔叶混交林过渡到常绿-落叶阔叶林,再发展为常绿阔叶林。 依据23个植物类群分析获得7个古气候参数:年均温17.7-21.4°C,最热月均温22.2-27°C,最冷月均温8.4-13.4°C,年较差12.1-15.3°C,年降水量1136-1869.9mm,最大月降水量211.8-283.3mm,最小月降水量20.3-36.8mm。 对比现代嵊州地区气候参数,早上新世嵊州地区年降水量略高于现代,年均温比现代高1.3-5°C,年较差为12.1-15.3°C。早上新世期嵊州地区四季气温比现代平稳。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

钻地风属(Schizophragma Siebold & Zucc.)和冠盖藤属(Pileostegia Hook. f. & Thomson)隶属于虎耳草科绣球花亚科绣球花族植物,分布于东亚。本论文对钻地风属和冠盖藤属进行了全面的分类学研究:重点分析了钻地风属和冠盖藤属各形态性状的变异式样,确定了二属的性状变异范围;在光学显微镜下,对钻地风属中6种5变种和冠盖藤属中2种共130份材料的叶表皮特征进行了深入、全面的观察和研究;并对二属的叶脉序特征进行了研究。结果显示,苞片存在与否、不育花存在与否、花瓣顶端是否联合、蒴果和种子的形状、叶片质地、生长习性、表皮细胞垂周壁加厚与否、气孔器分布、类型、气孔大小、保卫细胞轮廓、外拱盖是否双层、二级脉、三级脉、高级脉及网眼等特征在属的水平上具有重要的分类学意义,这些性状特征支持将钻地风属和冠盖藤属作为两个独立的属处理。根据形态性状及叶脉序特征推测,冠盖藤属较原始,钻地风属较进化。在钻地风属中,叶片毛被的有无及类型、叶片形状和叶缘的形状等特征可作为可靠的分种依据;叶表皮特征在种及种下等级具有重要的分类学意义;叶脉序多呈现环节曲行羽状脉式样,二级脉具分枝,在种间存在细微差别。根据形态性状及叶脉序特征推测,厚叶钻地风S. crassum Hand.-Mazz.和白背钻地风S. hypoglaucum Rehder可能为钻地风属中较原始的类群,秦榛钻地风S. corylifolium Chun和绣球钻地风S. hydrangeoides Siebold & Zucc.可能较进化。在冠盖藤属中,叶片毛被的有无及类型、叶片形状等特征可作为可靠的分种依据;该属中叶表皮特征相似,2个种间叶表皮特征无差异;叶脉序多呈现环节曲行羽状脉式样,二级脉无分枝,在种间差异极小。 作者在研究了近2000份腊叶标本的基础上,结合叶表皮特征和叶脉序特征,认为钻地风属和冠盖藤属为两个独立的属。首次对钻地风属和冠盖藤属进行了世界性的分类学修订,确认钻地风属含7个种、5个变种,冠盖藤属含2个种。对钻地风属中的5个名称和冠盖藤属中的2个名称进行了归并;为钻地风属中的1个名称和冠盖藤属中的2个名称指定了后选模式;发现被命名为维西钻地风S. crassum Hand.-Mazz. var. hsitaoianum (Chun) C. F. Wei的类群其正确名称为S. crassum Hand.-Mazz. var. ellipticum J. Anthony;恢复了变种小粉绿钻地风S. integrifolium Oliv. var. minus Rehder;重新界定了白背钻地风和小粉绿钻地风的变异范围,澄清了中国文献中记载的粉绿钻地风S. integrifolium Oliv. var. glaucescens Rehder长期存在的名实混乱问题。本论文对各个分类群进行了详细的形态描述,给出了分种检索表,并附分布资料及地理分布图。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf, which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor, so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.